
Characterising Choiceless Polynomial Time
with First-Order Interpretations

Erich Grädel, Wied Pakusa, and Svenja Schalthöfer
RWTH Aachen University

{graedel,schalthoefer,pakusa}@logic.rwth-aachen.de

Łukasz Kaiser
LIAFA, CNRS & Université Paris 7 (currently at Google Inc.)

lukaszkaiser@gmail.com

Abstract—Choiceless Polynomial Time (CPT) is one of the
candidates in the quest for a logic for polynomial time. It is
a strict extension of fixed-point logic with counting, but to date
the question is open whether it expresses all polynomial-time
properties of finite structures. We present here alternative char-
acterisations of Choiceless Polynomial Time (with and without
counting) based on iterated first-order interpretations.

The fundamental mechanism of Choiceless Polynomial Time
is the manipulation of hereditarily finite sets over the input
structure by means of set-theoretic operations and comprehension
terms. While this is very convenient and powerful for the design
of abstract computations on structures, it makes the analysis of
the expressive power of CPT rather difficult. We aim to reduce
this functional framework operating on higher-order objects to
an approach that evaluates formulae on less complex objects.

We propose a more model-theoretic formalism, called
polynomial-time interpretation logic (PIL), that replaces the
machinery of hereditarily finite sets and comprehension terms
by traditional first-order interpretations, and handles counting
by Härtig quantifiers. In our framework, computations on finite
structures are captured by iterations of interpretations, and a run
is a sequence of states, each of which is a finite structure of a
fixed vocabulary. Our main result is that PIL has precisely the
same expressive power as Choiceless Polynomial Time.

We also analyse the structure of PIL and show that many
of the logical formalisms or database languages that have been
proposed in the quest for a logic for polynomial time reappear
as fragments of PIL, obtained by restricting interpretations in
a natural way (e.g. by omitting congruences or using only one-
dimensional interpretations).

I. INTRODUCTION

The quest for a logic for PTIME is one of the most important

and fundamental challenges in the field of finite model theory

(see e.g. [1], [2]). It is equivalent to the classical question

in database theory, posed by Chandra and Harel [3], whether

there is a query language on relational databases expressing

precisely the polynomial time computable queries. 1 The study

of this question motivated the definition of more and more

expressive languages that capture interesting and natural levels

of polynomial-time computability. A central logic of reference

for this quest is fixed-point logic with counting (FPC) which

captures PTIME on many important classes of finite structures

such as planar graphs, structures of bounded tree-width, and,

1Formally, a logic consists of a decidable set of sentences and an
isomorphism-closed relation |= between structures and sentences. A logic
captures PTIME if it can define all PTIME-decidable Boolean queries and there
is an algorithm that, for each sentence, outputs a PTIME algorithm deciding
the corresponding query. For precise definitions, see e.g. [2].

indeed, every class of graphs which excludes a fixed graph as

a minor [4]. Further, this logic is powerful enough to express

most of the common polynomial-time properties of finite struc-

tures as well as fundamental algorithmic techniques including,

for instance, by a recent result of Anderson, Dawar and Holm,

the ellipsoid method for linear programs [5]. More specifi-

cally, the aforementioned classes even admit FPC-definable
canonisation which means that FPC can define, given an input

structure, an isomorphic copy of that structure over a linearly

ordered universe. Clearly, if a class of structures admits FPC-

definable canonisations, then FPC captures PTIME on this

class, since by the Immerman-Vardi Theorem (see e.g. [1])

fixed-point logic can define every polynomial-time query on

ordered structures.

On the other hand, FPC fails to capture PTIME in general,

which was shown by the CFI-construction of Cai, Fürer and

Immerman [6]. This has motivated the search for logics with

polynomial-time data complexity that are more expressive than

FPC. Given our current knowledge, the two main sources of

problems that separate PTIME from FPC are tractable cases

of the graph isomorphism problem and queries from the field

of linear algebra. First of all, although polynomial-time graph

isomorphism tests are known for graphs of bounded degree

or bounded colour class size, the CFI-construction shows that

FPC cannot define the graph isomorphism problem even on

classes of graphs where both the degree and the colour class

size are simultaneously bounded by a constant. Recall that a

graph of colour class size q is a graph coloured by an ordered

set, say natural numbers, where at most q vertices get the same

colour. Secondly, Atserias, Bulatov and Dawar [7] proved that

FPC cannot express the solvability of linear equation systems

over finite Abelian groups. Interestingly, also the CFI-query

can be formulated using a linear equation system over Z2 [8].

Currently, Rank Logic (FPR) and Choiceless Polynomial
Time (CPT) seem to be the two most promising candidates

for logics that may capture PTIME. The first one, Rank Logic,

was introduced by Dawar, Grohe, Holm and Laubner in [8]

and is motivated by the fact that certain crucial problems from

linear algebra cannot be expressed in FPC. It is defined as

the extension of fixed-point logic by operators for the rank

of definable matrices over finite fields. It was shown in [8]

that Rank Logic is a strict extension of fixed-point logic with

counting, and that it is powerful enough to define many of

the known properties that separate FPC from PTIME. Perhaps

2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science

1043-6871/15 $31.00 © 2015 IEEE

DOI 10.1109/LICS.2015.68

677

the most important ones are the solvability of linear equation

systems over finite fields and the CFI-query. Similar extensions

of FPC by operators that solve linear equation systems over

finite rings (and not only over finite fields) have then been

studied in [9]. For all of these extensions it remains open

whether they suffice to capture PTIME.

In this paper we focus on the second candidate for a

logic for PTIME, namely Choiceless Polynomial Time (CPT),

an extension of FPC which has been proposed by Blass,

Gurevich and Shelah in [10]. Instead of augmenting the power

of FPC by operators for certain undefinable queries (such as

the rank of a matrix), the basic idea of CPT is to combine

the manipulation of higher order objects (namely hereditarily

finite sets over the input structure) with a bounded amount

of parallel computation. Technically, Choiceless Polynomial

Time is based on BGS-machines (for Blass, Gurevich and

Shelah), a computation model which directly works on struc-

tures (and not on their string encodings, like Turing machines

do). Notice that although the definition of CPT is technically

based on a machine model, it satisfies the formal requirements

for a logic for PTIME, as formulated in a precise way by

Gurevich in [11] (see also [2]). In particular, computations of

BGS-machines respect symmetries of the input structure, and

the set of states in a run of a BGS-program is closed under

automorphisms of the input structure. More informally this

means that BGS-computations are choiceless: it is impossible

to implement statements like “pick an arbitrary element x
and continue” which occur in many high-level descriptions

of polynomial-time algorithms (e.g. Gaussian elimination, the

Blossom algorithm for maximum matchings, and so on). On

the other hand, BGS-machines are very powerful due to their

ability to construct and manipulate hereditarily finite sets over

the input structure (i.e., finite sets whose elements are either

elements of the input structure or again hereditarily finite sets).

If one imposes no further restriction on BGS-logic then every
decidable class of structures can be defined in BGS-logic.

Thus, to define CPT, a polynomial-time fragment of BGS-

logic, one has to restrict the access of a BGS-program to

hereditarily finite sets in the sense that only sets of polynomial

complexity may be used. To be a realistic candidate for a logic

for PTIME, Choiceless Polynomial Time also has, and needs,

a built-in operator to define the cardinality of sets. As Blass,

Gurevich and Shelah proved in [10], the variant CPT− of

Choiceless Polynomial Time without such an operator cannot

express even very elementary counting properties such as

the question whether a set has an even number of elements

(although this is much more difficult to prove than for, say,

fixed-point logic).

The ability of Choiceless Polynomial Time to create and

manipulate hereditarily finite sets over the input structure can

be used to compensate for the absence of a linear order by the

parallel creation of all linear orders on a small subset of the

input structure. This has been used by Blass, Gurevich and

Shelah to show that on structures of size n, CPT captures

polynomial time properties of fragments of size m if m! ≤ n.

Later, Laubner [12] was able to generalise this by proving

that CPT even captures PTIME on fragments of logarithmic

size (when restricted to graphs). Furthermore, Dawar, Richerby

and Rossman [13] proved that CPT can define the CFI-query.

Their clever construction uses the power of CPT to avoid

arbitrary choices by finding succinct (polynomial-time repre-

sentable) encodings of exponential-sized objects as hereditarily

finite sets. In addition, they proved that these hereditarily finite

sets have a high complexity in terms of their set-theoretic rank,

and also that this is necessary: the fragment of CPT which

can only access hereditarily finite sets of bounded rank cannot

define the CFI-query. Further progress in our understanding

of the power of CPT was recently made in [14], by the

construction of canonisation procedures in CPT for structures

of bounded colour class size with Abelian symmetry groups on

the colour classes. This implies in particular that CPT captures

polynomial time on structures of colour class size two. Since

the CFI-graphs can be represented as structures of colour

class size two, this can be seen as a strong generalisation of

the CPT-definability result of Dawar, Richerby and Rossman

discussed above. At the same time, this solves a problem

posed by Blass, Gurevich, and Shelah in [15]: the isomorphism

problem for multipedes (which, again, are structures of colour

class size two) is definable in CPT.

While the definition of Choiceless Polynomial Time via

the manipulation of hereditarily finite sets is very convenient

and powerful for the design of abstract computations on

structures, it makes the analysis of the expressive power of

CPT rather difficult. Standard techniques for the analysis of

logical systems as used in finite model theory, for instance

those based on Ehrenfeucht-Fraı̈ssé methods, are not directly

available. In particular, applications of comprehension terms

increase the rank of objects and are difficult to handle by

the common logical tools, which are usually restricted to

‘flat’ objects. Thus we aim to reduce this rather functional

framework operating on higher-order objects to an approach

that evaluates formulae on less complex objects.

In this paper we shall present alternative characterisations

of CPT (with and without counting) that are based on clas-

sical model-theoretic techniques. We replace the machinery

of hereditarily finite sets and comprehension terms by tradi-

tional first-order interpretations, and handle counting by Härtig

quantifiers (which are classical quantifiers for cardinality com-

parison). In our framework, computations on finite structures

are captured by iterations of interpretations, and a run is a

sequence of states, each of which is a finite structure of a fixed

vocabulary. There is an initial interpretation that produces the

initial state as a structure interpreted in the input structure, and

a second interpretation Istep that always maps the current state

to its successor state. Since interpretations need not be one-

dimensional they can increase the size of the states. Although

one application of an interpretation increases the size only

polynomially, without imposing restrictions, the iterated appli-

cation through a polynomial number of steps could produce

states of exponential size. By imposing polynomial bounds on

the length of such computations and the size of the states, we

obtain polynomial-time interpretation logic. Our main result is

678

that this logic, denoted PIL, has precisely the same expressive

power as Choiceless Polynomial Time.

Theorem 1. PIL ≡ CPT.

The equivalence survives also in the absence of counting:

polynomial-time interpretation logic without the Härtig quan-

tifier PIL− is equivalent to CPT−.

We hope that these alternative, and in a sense more model-

theoretic, characterisations of CPT will help us build a

more powerful toolkit of methods to analyse the structure

and expressive power of Choiceless Polynomial Time and

interpretation logic. In particular, the presentation in terms

of first-order interpretations leads to natural fragments and

stratifications of this logic along familiar syntactic parameters.

For instance, one can consider the natural restrictions of PIL to

k-dimensional interpretations, and/or to interpretations where

the domain or equivalence formulae are trivial. We shall prove

that the iteration of one-dimensional interpretations is in fact

equivalent to the familiar relational iteration appearing in the

partial fixed-point logic PFP, or equivalently, in the database

language while. Thus, without the Härtig quantifier, one-

dimensional polynomial-time interpretation logic turns out to

be equivalent to the polynomial-time restriction of PFP, which

by means of a classical result due to Abiteboul and Vianu

implies that one-dimensional PIL− is equivalent to LFP if,

and only if, PTIME = PSPACE. On the other hand, it is known

(see e.g. [16]) that the polynomial-time restriction of PFP with

counting is actually equivalent to FPC. From this, we obtain

the interesting result that one-dimensional PIL, when evaluated

on the expansions of finite structures by an ordered numerical

sort, has precisely the expressive power of FPC. One can

thus view FPC as a one-dimensional fragment of PIL and

CPT. In our view this confirms the intuition that the additional

power of Choiceless Polynomial Time over FPC comes from

the generalization of relational iteration in a fixed arity (as in

fixed-point logics) to iterations of relations of changing arities.

Already two-dimensional interpretations give us this additional

flexibility of relational iteration and, indeed, two-dimensional

PIL turns out to be equivalent to full PIL.

Another interesting question is whether the representation

of equality by congruence relations and the passage to quo-

tient structures are really necessary for obtaining the full

expressive power of PIL. It turns out that in the absence

of counting, PIL− without congruences is equivalent to a

previously studied extension of the database language while,

called whilenew |PTIME which is known to be strictly weaker

than CPT. In the presence of counting, the situation is even

more intriguing. We shall prove that on any class of structures

of bounded colour class size, PIL without congruences can

be simulated by CPT-programs that access only hereditarily

finite sets of bounded rank. In particular this holds for the

class of CFI-graphs (which are, in fact, graphs of colour

class size four). Since Dawar, Richerby, and Rossman prove

in [13] that the CFI-query is definable in CPT, but not by

programs of bounded rank, this separates also congruence-

free PIL from full PIL. We conclude that, with or without

counting, congruences are really essential for reaching the full

power of PIL.

In Sect. II we recall the precise definition of CPT, in the

variant presented by Rossman [17], and in Sect. III we in-

troduce interpretation logic and its polynomial-time fragment,

PIL. The following three sections are used to establish the

equivalence of PIL and CPT. We shall first prove that the

cardinality operator in CPT (which associates with every set

the finite ordinal describing its cardinality) can be replaced

by an equicardinality relation without reducing the expressive

power. We obtain an equivalent variant CPTEqCard of CPT,

and describe then simulations from PIL to CPTEqCard and

vice versa in Sect. V and VI. Together, this proves Theorem 1.

In the final section of the paper, we discuss several fragments

of interpretation logic and relate them to logics and database

query languages that have previously been proposed and

studied in the context of the quest for a logic for polynomial

time, and have turned out to be weaker than CPT.

II. CHOICELESS POLYNOMIAL TIME

Choiceless Polynomial Time operates on hereditarily finite

sets. Thus we first recall some basic notions of set theory.

We denote by [n] the von Neumann ordinal associated with

the natural number n, and by ω the first infinite ordinal. The

notation [n] is used to make the set-theoretic representation

explicit. We identify the cardinality |A| of a finite set A
with the respective von Neumann ordinal. We write 〈a, b〉 to

denote the Kuratowski encoding of the ordered pair (a, b),
and 〈a1, . . . , ak〉 for k �= 2 for the corresponding set-theoretic

encoding of a k-tuple.

Sets can contain sets and atoms. Atoms are never sets, and

x ∈ y only holds if y is a set. An object is a set or an atom. A

set y is transitive if x ⊆ y for every set x ∈ y. The transitive
closure tc(x) of a set x is the least transitive set y with x ⊆ y.

An object is hereditarily finite if its transitive closure is finite.

The collection HF(A) of hereditarily finite objects over a set

A of atoms is defined as the set of all objects x such that

x ∈ A or x is a hereditarily finite set such that all atoms

in tc(x) are elements of A. Alternatively, we say that each

atom is hereditarily finite, and, recursively, each finite set of

hereditarily finite objects is again hereditarily finite.

Choiceless Polynomial Time is a polynomial-time restric-

tion of BGS-logic (named after Blass, Gurevich and Shelah).

Essentially, BGS-logic permits iterated construction of hered-

itarily finite sets over the input structure. A fragment that lies

inside of PTIME is obtained by restricting the complexity of

the sets occurring in the computation.

Whereas the original definition of BGS-logic given by

Blass, Gurevich and Shelah in [10] consists of instructions

similar to those of a machine model, the equivalent definition

introduced by Rossman in [17] is based on iterated evaluation

of BGS-terms. The definition of BGS-logic and CPT we give

in the following corresponds to the one in [17] except for some

technical details.

Let τ be a relational signature. Then τHF = τ ∪
{Atoms,Empty,∈,TheUnique,Pair,Union,Card}, where

679

Atoms,Empty are constant symbols, ∈ is a binary relation

symbol, TheUnique,Union,Card are unary function symbols

and Pair is a binary function symbol.
Given a τ -structure A, the hereditarily finite expansion

HF(A) of A is the τHF-structure over HF(A) where the

relations in τ are defined as in A and the auxiliary functions

and relations are defined as follows:

• EmptyHF(A) = ∅, AtomsHF(A) = A,

• ∈HF(A)= {(a, b) | a ∈ b},

• PairHF(A)(a, b) = {a, b},

• UnionHF(A)(a) = {b ∈ c | c ∈ a}
• TheUniqueHF(A)(a) =

{
b a = {b},
∅ otherwise,

• CardHF(A)(a) =

{ |a| a /∈ A,
∅ otherwise.

BGS-terms (or simply terms) are variables and constants

in τHF (these are the atomic terms), objects of the form ft
for a function symbol f ∈ τHF and terms t, Boolean terms

or comprehension terms. For BGS-terms t1, . . . , tr and each

r-ary relation symbol R ∈ τHF, t1 = t2 and Rt1 . . . tr are

Boolean terms. Boolean combinations of Boolean terms are

again Boolean terms. {s(x, y) : y ∈ r(x) : ϕ(x, y)} is a

comprehension term if s and r are terms and ϕ is a Boolean

term. The value �t�A of a term t is defined as an element of

HF(A) in the obvious way, where the value of a Boolean term

is represented as false := ∅ or true := {∅} and the value of a

comprehension term {s(x, y) : y ∈ r(x) : ϕ(x, y)} is the set

{�s(a, b)�A : b ∈ �r(a)�A : �ϕ(a, b)�A = {∅}}.
We say that each BGS-term tstep induces a BGS-program Π.

For each τ -structure A, the run of Π is the sequence (ai)i<κ
(κ ≤ ω) such that a0 = ∅, ai+1 = �tstep(ai)�A for all i, and

κ is maximal such that ai /∈ {∅, {∅}} for all 0 < i < κ. If

κ is finite, aκ is the final state of the run of Π on A and

Π(A) = aκ−1. In that case, A |= Π if and only if aκ = {∅},

and if κ is infinite, the truth value of A |= Π is undefined.
To obtain a polynomial bound, we restrict both the com-

plexity of the states and the length of the run.
A CPT-program is a pair Π = (Π, p(n)), where Π is a

BGS-program and p(n) is a polynomial. The run of Π on a

structure A is the maximal initial segment �′ of the run � of

Π on A, such that

• �′ is of length at most p(|A|), and

• |tc(ai)| ≤ p(|A|) for each state ai in �′.
If the final states of � and �′ coincide, then A |= Π if and

only if A |= Π. Otherwise the truth value is undefined.
Note that, with the cardinality function, it is possible to

count the number of iterations and to determine the sizes of

tc(ai). Therefore each CPT-program is equivalent to a CPT-

program whose output is never undefined.
A variant of BGS and CPT is obtained by replacing the

function Card in HF(A) by the following 2-ary relation

EqCard:

EqCardHF(A) = {(a, b) | |a| = |b|}.
We denote the resulting logics by BGSEqCard and

CPTEqCard, respectively. BGS and CPT refer to the variants

of the logics with the cardinality function, and logics with

neither Card nor EqCard are denoted BGS− and CPT−,

respectively.

III. INTERPRETATION LOGIC

Interpretation logic is based on first-order interpretations.

To express counting operations in that logic, we extend first-

order logic by the Härtig quantifier with the following rule

for constructing formulae: If ϕ and ψ are formulae, then

Hxy(ϕ, ψ), where x occurs free in ϕ and y occurs free in

ψ, is a formula. The semantics is defined by A |= Hxy(ϕ, ψ)
if and only if |{a ∈ A | A |= ϕ(a)}| = |{b ∈ A | A |= ψ(b)}|.
The resulting logic is FO+H.

Now let us recall the notion of interpretations over an

extension of first-order logic.

Let L be an extension of FO and let τ , σ be relational sig-

natures. A k-dimensional L[τ, σ]-interpretation is a sequence

I =
(
ϕdom, ϕ≈, (ϕR)R∈σ

)
of L[τ]-formulae where

• ϕdom, called the domain formula, has exactly k free

variables,

• ϕ≈, called the equality formula, has exactly 2k free

variables,

• each ϕRi has exactly k · ri free variables (where ri is the

arity of Ri).

Note that we only consider interpretations without pa-

rameters, because we regard interpretations as a means of

transforming structures within a computation.

A formula ϕdom(x1, . . . , xk) defines the set ϕA
dom =

{(a1, . . . , ak) | A |= ϕdom(a1, . . . , ak)}.

An L[τ, σ]-interpretation defines a mapping from τ - to σ-

structures as follows: For a τ -structure A and a σ-structure

B, we say that B = I(A) if there exists a surjective mapping

h : ϕA
dom → B such that

• for all a1, a2 ∈ ϕA
dom, h(a1) = h(a2) if and only if a1 =

a2 or A |= ϕ≈(a1, a2), and

• for every r-ary relation symbol R ∈ σ and all tuples

a1, . . . , ar ∈ ϕA
dom, (h(a1, . . . , ar)) ∈ RB if and only if

A |= ϕR(a1, . . . , ar).

I(A) is usually identified with the structure over the domain

ϕA
dom/ϕ

A
≈.

We say that an interpretation I preserves the domain if I =(
ϕdom, ϕ≈, (ϕR)R∈σ

)
is one-dimensional, ϕdom is valid and

ϕ≈(x, y) is equivalent to x = y. Furthermore, I preserves a

relation R if I preserves the domain and ϕR(x1, . . . , xr) is

equivalent to Rx1 . . . xr.
The concatenation I1◦I2 of an L[τ, σ]-interpretation I1 and

an L[σ, σ′]-interpretation is an interpretation with I1◦I2(A) =
I2(I1(A)) for each τ -structure A.

Let τ, σ be relational signatures such that σ contains des-

ignated nullary relation symbols Halt and Out and let L be

an extension of FO. The sentences of interpretation logic (IL)
are defined as programs: An IL[τ, σ]-program over L is a pair

Π =
(Iinit, Istep

)
, where Iinit is an L[τ, σ]-interpretation and

Istep is an L[σ, σ]-interpretation. Π defines a mapping from

τ -structures to σ-structures as follows:

680

For each τ -structure A, the run of Π on A is the sequence

(Ai)i<κ, where κ is a finite ordinal or ω, such that A0 =
Iinit(A), Ai+1 = Istep(Ai), and κ is maximal such that Ai �|=
Halt for all i < κ. If κ is finite, Aκ is the final state of

the run of Π on A, Π(A) = Aκ and A |= Π if and only if

Π(A) |= Out.
Analogously to CPT, we place polynomial bounds on the

length of a run and the complexity of the states of an IL-

program to obtain a fragment in PTIME.

A PIL-program is a pair Π = (Π, p(n)), where Π is an IL-

program and p(n) is a polynomial. The run of Π on a structure

A is the maximal initial segment �′ of the run � of Π on A,

such that

• �′ is of length at most p(|A|), and

• |Ai| ≤ p(|A|) for each state Ai in �′.
Again, if the final states of � and �′ coincide, then A |= Π

if and only if A |= Π. Otherwise the truth value is undefined.

In the following, we denote by IL and PIL interpretation

logic and polynomial-time interpretation logic, respectively,

assuming that the underlying logic is L = FO+H, and we

denote by IL− and PIL− these logics for the case L = FO.

In order to ease the analysis of PIL, we observe that a single

binary relation symbol for the step-interpretation Istep already

suffices to obtain its full expressive power. This is because,

as shown for instance in [18], there is an interpretation that

uniquely maps each structure to a graph. Moreover, one

can easily show that signatures consisting only of monadic

predicates are not sufficient.

Remark 2. PIL[τ, {E}] ≥ PIL[τ, σ] for all signatures τ, σ.
Moreover, if σ only contains monadic predicates we have
PIL[{E}, {E}] > PIL[{E}, σ].

IV. EXPRESSING COUNTING WITH EQUICARDINALITY

In the following sections, we show that interpretation logic

is indeed an alternative representation of Choiceless Polyno-

mial Time.

PIL uses an equicardinality quantifier, whereas CPT is

defined with an explicit counting function. Thus, we first show

that the variant of CPT with an equicardinality relation is as

expressive as CPT.

Proposition 3. CPT ≡ CPTEqCard.

Proof. First, we observe that the function Card returns a von

Neumann ordinal. Since BGS naturally has the ability to create

hereditarily finite sets, it is possible to create finite ordinals.

So we will construct, for each CPT program, an equivalent

CPTEqCard program that first creates the set of all ordinals

necessary for the computation and then simulates each term

Card t with a term defining the unique ordinal that has the

same cardinality as the value of t.
In order to know in advance which ordinals have to be

created, we use the polynomial bound on the complexity of

states inherent in each CPT program. The following technical

lemma will imply a bound on the complexity of all sets

occurring in the computation of a CPT program.

Lemma 4. For each BGS-term t(x1, . . . , xk) and each poly-
nomial p, there is a polynomial q such that, for each input
structure A and each tuple a ∈ HF(A)k where p(|A|)
bounds the transitive closure of each component, tc(�t(a)�)
is bounded by q(|A|).
Proof of Lemma 4. Induction on t. For atomic and Boolean

terms, the statement is trivial. For terms Union(t),
TheUnique(t), Pair(t1, t2) it follows immediately from the

induction hypothesis.

Now let t = {s(x, y) : r(x) : ϕ(x, y)}. Then tc(�t(a)�) ⊆⋃{tc(�s(a, b)�) : b ∈ �r(a)�}. By induction hypothesis, there

are polynomials qs and qr that bound tc(�s(a, b)�) and the

transitive closure of all b ∈ �r(a)� as well as the size of �r(a)�,

respectively. By definition of �t�, the polynomial for t can be

constructed from the product of qs and qr.

In the resulting CPTEqCard program, the ordinals will be

encoded in the value of the free variable of the term tstep

inducing the program. So we define for each BGS term a

BGSEqCard term that computes the same value and uses the

encoded ordinal to express the cardinality function with the

equicardinality relation.

Lemma 5. For every BGS term t, there is a BGSEqCard

term tEqCard such that �tEqCard(〈a1, [m]〉, a2, . . . , ak)� =
〈�t(a1, . . . , ak)�, [m]〉 for each m ∈ N that is greater than
the cardinality of �t′(a1, . . . , ak)� for all subterms t′ of t.

Proof of Lemma 5. Induction on t. For t = Card(s(x)), let

tEqCard(x) = tPair

(
TheUnique

({
y : y ∈ (x1)2 :

EqCard
(
y,

(
sEqCard(x)

)
1

)})
, (x1)2

)
,

where tPair(a, b) is a term defining the ordered pair 〈a, b〉,
(x1)2 defines the second component of x1 if x1 is an ordered

pair, and, analogously,
(
sEqCard(x)

)
1

defines the first compo-

nent of sEqCard(x). Since m is large enough, tEqCard always

defines the cardinality of �s�.

Using the term tEqCard
step for a term tstep inducing a CPT pro-

gram, we can simulate the associated program in CPTEqCard.

Clearly, the equicardinality relation can be expressed using

the cardinality function, so CPTEqCard ≤ CPT. For the other

direction, let (Π, p) be a CPT program, where Π is induced by

the term tstep. We construct a CPTEqCard program (Πsim, psim)
that simulates (Π, p).

By definition of CPT, it holds for each structure A that

|tc(ai)| is bounded by p(|A|) for each state ai of the run of

Π on A. So, since the value of the free variable of tstep is

bounded by p, Lemma 4 implies that there is a polynomial

q that bounds the value of each subterm of tstep(ai). Then q
provides an upper bound for all cardinalities occurring in the

runs of (Π, p).
So, on each structure A, Πsim first constructs the ordinals

up to q(|A|). Since BGS terms can express basic set-theoretic

operations, it is possible to compute successor ordinals until

one of cardinality |A| exists, compute a set of size q(|A|) using

681

cardinal arithmetic and then again compute successor ordinals

to obtain [q(|A|) + 1].
Again with basic set-theoretic operations, the program con-

structs the ordered pair 〈∅, [q(|A|) + 1]〉.
By Lemma 5, there is a term tEqCard

step such that, for each

state ai of a run of Π on A,
�
tEqCard

step (〈ai, [q(|A|) + 1]〉)
�
=

〈�t(ai)�, [q(|A|)+1]〉. Note that sequential execution of BGS-

programs is possible, so there is a BGSEqCard-program per-

forming the operations described above.

After the initialisation of the ordinals, which needs q(|A|)+
1 states, each state in the run of Πsim corresponds to a state in

the run of Π. Furthermore, the transitive closure of each state

is bounded by p(|A|) + q(|A|) + c, where c is the number of

elements necessary to encode the ordered pairs.

So there is a polynomial psim such that (Πsim, psim) is a

CPTEqCard program with the same output as (Π, p).

V. SIMULATING INTERPRETATION LOGIC IN CHOICELESS

POLYNOMIAL TIME

To show our main result, we simulate CPTEqCard-programs

in PIL and vice versa. The elementary parts of PIL-programs

are (FO+H)-formulae, so we start by simulating (FO+H)-

formulae with BGSEqCard-terms.

Note that, by Remark 2, we can w.l.o.g. consider only

PIL[τ, {E}]-programs.

Since BGS-terms are evaluated in HF(A) for each structure

A, whereas FO formulae are evaluated in arbitrary struc-

tures, we first define a precise notion of simulation between

(FO+H)-formulae and BGSEqCard-terms.

Definition 6. Let ϕ(x) be a formula of vocabulary {E}. A
BGS-term tϕ over τ simulates ϕ if for every finite τ -structure
A and every σ-structure B = (B,E) with B,E ∈ HF(A)
and all b ∈ Bk it holds that B |= ϕ(b) if and only if�tϕ(b, B,E)�A = true.

Next, we show that any (FO+H)-formula can be simulated

in that sense.

Lemma 7. For each (FO+H)-formula ϕ(x) over {E} and
each signature τ , there is a BGS-term tϕ(x, yB , yE) over τ
simulating ϕ.

Proof. Induction on ϕ.

Induction Base. First note that the only FO-terms over a

relational signature are variables. So for formulae of the

form t1 = t2 there is nothing to show. For ϕ = Et1t2,

let tϕ = tPair(t1, t2) ∈ yE , where tPair(a1, a2) defines the

ordered pair 〈a1, a2〉.
Induction Step. Boolean connectives are translated directly.

The formula ϕ = ∃xψ is translated to the term tϕ = ∅ ∈ {∅ :
x ∈ yB : tψ(x)}, and for ϕ = Hxy(ψ(x), ϑ(y)), we let tϕ =
EqCard ({x : x ∈ yB : tψ(x)} , {y : y ∈ yB : tϑ(y)}).

The terms for the formulae in PIL-programs are combined

to simulate PIL computations in BGS.

Proposition 8. PIL ≤ CPTEqCard.

Proof. Let Π = (Π, p) be a PIL[τ, {E}]-program. We con-

struct a CPTEqCard-program Πsim that represents each state

Ai = (Ai, Ei) as the pair 〈Ai, Ei〉. Note that the domain of

each state is a set of equivalence classes of tuples from the

domain of the previous state. Thus the domain of a state can

be expressed with the term

{{
y : y ∈ sk1 : tdom(y, s1, s2)∧ t≈(x, y, s1, s2)}

: x ∈ sk1 : tdom(x, s1, s2)
}
,

where s is a free variable that denotes the previous state, sj
defines the jth component of s whenever s is an ordered pair,

sk1 defines the set of k-tuples over s1 if s1 is a set, and tdom and

t≈ are the terms simulating the domain and equality formula

of Istep according to Lemma 7.

The relation Ei of a state Ai can then be defined using the

term above and the term simulating ϕE in Istep. Clearly, for-

mulae for applying Iinit can be defined analogously (note that,

for that interpretation, the FO+H-formulae can be simulated

in a more straightforward way because the BGS-terms can

directly refer to the relations in the input signature).

The term tstep inducing Πsim transforms each state into

the pair representing the successor state, and uses the terms

simulating the formulae defining Halt and Out to establish

the halting condition. Then, clearly, A |= Πsim if and only if

A |= Π for each τ -structure A.

Let � be the run of Π on a structure A, and let �sim be the

corresponding run of Πsim on A. By definition, each state in �
except for the initial and final state represents a state in �sim, so

the length of �sim is bounded by p(|A|)+2. For the bound on

the states, it suffices to consider the transitive closure of each

set Ai, since the relation only consists of pairs of elements of

Ai, so a polynomial bound on Ai implies a polynomial bound

on each state 〈Ai, Ei〉.
We show by induction on i that, for each state 〈Ai, Ei〉 in

�sim, |tc(Ai)| ≤ p(|A|)k ·c ·i+p(|A|) ·i, where c is the number

of additional sets necessary to encode a k-tuple. This clearly

holds for A. In the induction step, the domain Ai+1 consists

of sets of tuples of elements from Ai. So

|tc(Ai+1)| ≤ |tc(Ai)|+ |tc(Aki) \ tc(Ai)|+ |Ai+1|
≤ (p(|A|) · c · i+ p(|A|) · i) + c · p(|A|)k + p(|A|)
= p(|A|) · c · (i+ 1) + p(|A|) · (i+ 1).

|tc(Ai)| ≤ c ·p(|A|)k · i+p(|A|) · i holds by induction hypoth-

esis, |Aki | ≤ c ·Aki by definition of c and |Ai+1| ≤ p(|A|) by

definition of PIL.

So there is a polynomial psim such that (Πsim, psim) is

equivalent to (Π, p).

VI. SIMULATING CHOICELESS POLYNOMIAL TIME IN

INTERPRETATION LOGIC

For the other direction of the equivalence, note that PIL
computations are iterated interpretations, whereas CPT com-

putations are iterated evaluations of BGS-terms. So it seems

natural to simulate BGS-terms with interpretations in an

682

appropriate way. Note, however, the following difference be-

tween CPT and PIL computations: The states of a CPT
computation are arbitrary sets in HF(A), but any term can

construct new sets over A, for instance with the constant

Atoms. In contrast, PIL always modifies the current state

without reference to the input structure. Therefore, we con-

struct simulating interpretations in a way that the states of the

PIL computation contain representations of all sets that may

become necessary for the simulation of another term.

Additionally, the simulation should preserve polynomial

bounds. Since, by definition of CPT, the transitive closure

of each state is bounded polynomially, we can obtain a

polynomial bound for the respective PIL-program by ensuring

that not too many objects outside of that transitive closure are

represented in the states of the PIL-program. This still causes a

small technical difficulty: The polynomial bound on the value

of a term occurring in a CPT-program is only guaranteed if

the values assigned to the free variables actually occur in the

run of the CPT-program. So, in the states of the simulating

PIL-program, we require a relation that marks all possible

values of the free variables.

Summing up, the states of the simulating PIL-program

should represent the necessary elements of HF(A) and make

it possible to identify permitted values for the free variables.

When a term is simulated by an interpretation, only necessary

objects should be represented in the resulting state. A mapping

from possible values of free variables to values of a term is

represented by suitable relations.

These requirements are formalised in the following defini-

tions.

Definition 9. Let A be a τ -structure and let t be a BGS-term
over τ with k free variables. A structure S = (S, τstate) for
τstate ⊇ τ ∪ {Atoms,Empty,∈,∈∗, Tt, Vt} is an (A, t)-state

if, up to isomorphism,
• A ∪ {A, ∅, {∅}} ⊆ S ⊆ HF(A),
• S � τ ∪ {Atoms,Empty,∈} ⊆ HF(A) � τ ∪

{Atoms,Empty,∈} (where the constants are replaced
by unary relation symbols),

• ∈∗S is the transitive closure of ∈S,
• Vt is a k-ary relation symbol and Tt is a (k + 1)-ary

relation symbol.

Note that the signature τstate may contain additional relation

symbols. This will be necessary when simulating terms in-

ductively, because the relations Tt and Vt corresponding to

different subterms of the same term have to be preserved

during the simulation.

Definition 10. Let t(v) be a BGS-term over an input signature
τ with free variables v = v1, . . . , vk and let τstate be a signa-
ture of (A, t)-states. A [τstate, τstate]-interpretation It simulates

t if for all τ -structures A and all (A, t)-states S of vocabulary
τstate, it holds that, up to isomorphism,
• It(S) is an (A, t)-state,
• the domain of It(S) is S∪⋃a∈VS

t
({�t(a)�}∪tc(�t(a)�)),

• S ⊆ It(S),

• T
It(S)
t = {(a1, . . . , ak, �t(a1, . . . , ak)�) | (a1, . . . , ak) ∈
V S
t },

• V
It(S)
t = V S

t .

Simulation of terms is the crucial ingredient to the simu-

lation of BGS-programs. Thus, we now show the following

main lemma:

Lemma 11. For each BGS-term t, there is an interpretation
It simulating t.

Proof. Let t be a BGS-term over the signature τ .

In most cases, the simulating interpretation is the con-

catenation of interpretations that create objects representing

the relevant values of t. Therefore, we define the following

interpretations:

• Iadd enriches the domain by an element at,v for each

v ∈ Vt, where at,v represents the value �t(v)�, and Tt is

defined as the set of tuples (v, at,v),
• I∈ defines the relation ∈ for the new objects and updates

∈∗ accordingly,

• Imerge identifies all newly created objects that represent

the same set.

Iadd is a k+2-dimensional interpretation, where k is the arity

of Vt. In Iadd(A) for a structure A, each element a of A
is represented by the equivalence class containing all tuples

(b1, . . . , bk, a, a) for all b1, . . . , bk ∈ A, and each at,(v1,...,vk)
is represented by the class of all tuples (v1, . . . , vk, a1, a2) for

a1 �= a2.

I∈ preserves the domain and the relations except for ∈ and

∈∗. ∈ is extended to the newly created sets (depending on

the semantics of the term t), and ϕ∈∗(x, y) = x = y ∨ x ∈∗
y ∨ x ∈ y ∨ ∃z(x ∈∗ z ∧ z ∈ y).

In Imerge, the equality formula identifies all elements con-

taining the same set of elements according to the relation

∈. The element relation is only changed for newly created

elements, so both the operation of Imerge and the update of ∈∗
in Iadd are possible without recursion.

With these auxiliary interpretations, the simulation of terms

becomes a rather straightforward induction. In the following,

S denotes an (A, t)-state for a τ -structure A and we fix a

signature τstate for the term t containing relation symbols Ts, Vs
for all subterms s of t.

Induction on t:

1) t(x) = x: By definition, the relation Tt in It(S) should

be the set of all pairs (a, �t(a)�) = (a, a) for a ∈ V S
t . So

let It be the FO[τstate, τstate]-interpretation that preserves

the domain and relations of the input structure, except for

ϕTt
(x, y) = Vtx ∧ x = y.

2) t = c: Analogous to the previous case. Note that the

interpretations use a relational signature, so ϕTt
(x) =

Cx, for a suitable relation C. Since the input signature

is relational, c ∈ {Atoms,Empty}, so the value of c is

already an element of each (A, t)-state.

683

3) t(x) = Rt1(x) . . . tr(x) for some R ∈ τ : By induction

hypothesis, there are interpretations It1 , . . . , Itr simulat-

ing t1, . . . , tr. Let It = It1 ◦ · · · ◦ Itr ◦ IR, where IR is

the interpretation preserving the domain and the relations,

except for

ϕTt(x, y) = Vtx ∧ ((ϕtrue(x) ∧ y = {∅}) ∨
(¬ϕtrue(x) ∧ y = ∅)) ,

where

ϕtrue(x) = ∃y1 . . . ∃yr (Tt1xy1 ∧ . . . ∧ Ttrxyr
∧ Ry1 . . . yr) .

Note that the parameter t in the definition of (A, t)-states

only influences the relations Vt and Tt, so each (A, t)-
state is also an (A, t1)-state and an (A, t2)-state and vice

versa (assuming w.l.o.g. that the relations Tt, Tt1 and Tt2
are already present), so the concatenation is possible and

the interpreted structure is again an (A, t)-state.

4) t(x) = t1(x) = t2(x): Analogous to Case 3.

5) t(x) = t1(x) ∧ t2(x), t(x) = t1(x) ∨ t2(x) or t(x) =
¬t1(x): Analogous to Case 3.

6) t(x) = EqCard(t1(x), t2(x)) : Similarly to Case 3, let

It = It1 ◦ It2 ◦ IEqCard, where IEqCard defines Tt using

the following formula in ϕTt
:

ϕtrue(x) = ∃t1∃t2(Tt1xt1 ∧ Tt2xt2
∧ Hy1y2(y1 ∈ t1, y2 ∈ t2)).

7) t(x) = ft1(x) . . . tr(x): Since we assume the input sig-

nature to be relational, f ∈ {Pair,Union,TheUnique}.

a) t(x) = Pair(t1(x), t2(x)): Let It = It1 ◦ It2 ◦ Iadd ◦
I∈ ◦ Imerge, where It1 and It2 are obtained from

the induction hypothesis, and Iadd, I∈ and Imerge are

defined as above. I∈ ensures that at,v contains exactly

the elements of �t(v)� = {�t1(v)�, �t2(v)�}, so the

formula ϕ∈ in I∈ is

ϕ∈(x, y) = x ∈ y ∨ ∃v((Tt1vx ∨ Tt2vx) ∧ Ttvy).

By definition of simulation, (It1 ◦ It2)(S) is an

(A, t)-state over the domain S ∪ ⋃
a∈VS

t
({�t1(a)�} ∪

{�t2(a)�} ∪ tc(�t1(a)�) ∪ tc(�t2(a)�)). Iadd creates an

element for each value �t(a)� for a ∈ V S
t , and Imerge

makes sure that It(S) contains exactly one element

for each distinct set. So the domain of It(S) is as

required by the definition of simulation.

Since the relation ∈ is defined correctly by I∈ and the

relations remain otherwise unchanged, the interpreted

structure is again an (A, t)-state. Tt is defined appro-

priately by definition of Iadd, so It simulates t.
b) t(x) = Union(t1(x)): Let It = It1 ◦ Iadd ◦ I∈ ◦ Imerge,

where I∈ defines ∈ with the formula

ϕ∈(x, y) = x ∈ y ∨ ∃v (Ttvy∧∃t1∃z (Tt1vt1
∧ x ∈ z ∧ z ∈ t1)) .

With the same reasoning as in Case 7a, it follows that

It simulates t.
c) t(x) = TheUnique(t1(x)): Let It = It1 ◦ ITt

, where

ITt
preserves the domain and the relations except for

Tt, and defines Tt with the following formula:

ϕTt
(x, y) = ∃t1(Tt1xt1 ∧ ((ϕsing(t1) ∧ y ∈ t1)

∨ (¬ ϕsing(t1) ∧ Empty y))) ∧ Vtx,
where ϕsing(x) is a formula defining that x is a single-

ton.

Since It1 simulates t1, the domain of It1(S) already

contains all elements of �t1(a)�, so, by definition of

ITt
, It simulates t.

8) t(x) = {s(x, y) : y ∈ r(x) : ϕ(x, y)}: Let It = Imark ◦
Ir◦IV◦Is◦Iϕ◦Iadd◦I∈◦Imerge◦Iremove, where IV defines

Vs and Vϕ with the formula ϕVs(x, y) = ϕVϕ(x, y) =
∃r(Trxr ∧ y ∈ r) and I∈ defines ∈ with the formula

ϕ∈(x, y) = x ∈ y ∨ ∃v(Ttvy ∧ ∃z(Tsvzx∧
∃rTrvr ∧ z ∈ r

∧∃xϕ(Tϕvzxϕ ∧ ¬Empty xϕ))).

The interpretation Imark adds the whole domain to a unary

relation P to mark the elements of S, and Iremove uses

this information to remove all unnecessary elements from

the domain with the formula

ϕdom(x) = Px ∨ ∃y∃z1 . . . ∃zk(Ttz1 . . . zky ∧ x ∈∗ y).
By induction hypothesis, Ir defines Tr appropriately. By

definition, IV makes sure that the resulting structure is an

(A, s)-state and an (A, ϕ)-state, where Vs and Vϕ contain

exactly those tuples that are substituted for the free vari-

ables of s and ϕ when computing t. So Is and Iϕ define

Ts and Tϕ as required. In particular, Is creates an object

for each element of a value of t. Thus I∈ indeed defines

the values of t to be the correct sets, and Imerge restores

the property that the interpreted structure is an (A, t)-
state. By definition, Iremove ensures that the domain only

contains elements of S∪⋃
a∈VS

t
({�t(a)�}∪tc(t(a))). So

It simulates t.

In the following, we combine the interpretations simulating

the terms in a PIL-program to show that each CPT-program

can be simulated in PIL:

Proposition 12. CPTEqCard ≤ PIL

Proof. Let ΠCPT = (ΠCPT, pCPT) be a CPT-program, where

Π is the BGS program induced by the term tstep. We define a

PIL-program (Π, p) with Π =
(Iinit, Istep

)
that is equivalent

to ΠCPT.

The interpretation Istep will simulate the term tstep. There-

fore, Iinit transforms the input structure A to an (A, tstep)-
state. So Iinit is the concatenation of interpretations that create

objects representing the sets ∅, {∅} and A, define the relations

Atoms,Empty and ∈ accordingly, initialise relations Tt for

all subterms t of tstep, and define a relation Cur which contains

684

exactly ∅. This relation will contain the current value of the

free variable of tstep during the remaining execution of the

program, so Cur represents Vtstep
.

Istep simulates tstep and updates that relation. So let Istep =
Itstep

◦ ICur, where Itstep
is the interpretation simulating tstep

according to Lemma 11. ICur defines Cur with the formula

ϕCur = ∃y(Cury ∧ Ttstep
yx).

The program should halt whenever the current state is ∅ or

{∅}. So the relation Halt is defined by the formula that is

true if and only if the element identified by Cur is ∅ or {∅}.

Analogously, the formula defining Out is true if and only if

that element is {∅}.

Thus, by construction, Π is equivalent to ΠCPT.

It remains to translate the polynomial bound. Let �CPT

be the run of ΠCPT on a structure A and let � be the

corresponding run of Π. Since each state in � corresponds

to a state in �CPT, the length of both runs is the same.

By definition of simulation, the following holds for each

state Ai+1 in �:

|Ai+1| ≤ |A|+ 4 + |tc(�tstep(ai)�)|,
where ai is the ith state of �CPT (by the observations above,

ai is the only element of Cur in each state of �). Since each

tc(�tstep(ai)�) is bounded by pCPT(|A|), the maximal size of

a state in � is bounded by pCPT · pCPT(|A|) + 4. So if we let

p = pCPT ·pCPT+4, Π is equivalent to ΠCPT. This completes

the proof of Proposition 12.

VII. FRAGMENTS AND STRUCTURE OF INTERPRETATION

LOGIC

One of the motivations for the characterisation of CPT in

terms of iterated first-order interpretations is the hope that

this may help to build a more powerful toolkit of methods

to analyse the structure and expressive power of Choiceless

Polynomial Time and interpretation logic. In fact, for PIL
we obtain natural fragments and stratifications along familiar

syntactic parameters. In this section we follow these lines and

study some important stratifications of PIL with respect to

• the signature of the interpretation Istep,

• the dimension of the interpretations Iinit and Istep, and

• the possibility to use congruences in the interpretations

Iinit and Istep.

As mentioned in Remark 2, a single binary relation symbol

suffices to obtain the full expressive power of PIL. Monadic

predicates, however, do not suffice.

Interpretations of small dimension. We next consider the

restrictions of PIL along the dimension of the interpreta-

tions. We denote by k-dimensional PIL the set of all PIL-

programs ((Iinit, Istep), p) where both Iinit and Istep are at

most k-dimensional. It turns out that by restricting PIL to

one-dimensional interpretations (with and without counting)

we obtain strict fragments of PIL which are equivalent to

important logical formalisms that have been studied before. On

the other hand, already two-dimensional interpretations suffice

to obtain the full expressive power of PIL.

A technical point that is relevant for the study of

one-dimensional PIL is that, even with a Härtig quantifier,

one-dimensional interpretations cannot create the additional

objects (i.e. the ordinals) that are necessary to simulate count-

ing. We therefore consider one-dimensional PIL over two-

sorted structures. More precisely, for any logic L, we write

L∗ for the application of L to finite structures extended by a

disjoint linear order of the size of the input structure (as in

the definition of FPC, but without the connection of the two

sorts by counting terms or additional counting quantifiers).

It turns out that fixed-point logic with counting reappears

as a one-dimensional fragment of CPT and PIL.

Theorem 13. one-dimensional PIL∗ ≡ FPC

The main step in the proof is an equivalence between the

iteration of one-dimensional interpretations and iterations in

partial-fixed-point logic (for a definition, see [1]). Let PFPC
denote partial fixed-point logic with counting. The restriction

(PFPC)∗ |PTIME of PFPC to PTIME is defined analogously

to that of interpretation logic, where we put a polynomial

bound on the number of steps necessary to reach a fixed-point.

Clearly, PFPC is equivalent to (PFP+H)∗, where PFP+H
denotes the extension of PFP by the Härtig quantifier.

In order to simulate PFP formulae in PIL, we introduce a

notion of free variables of PIL programs. Whereas, usually,

the concept of free variables is not meaningful within the

framework of PIL, the elements of the output structure in the

one-dimensional case are already present in the input structure.

We say that a one-dimensional PIL-program has free variables

x1, . . . , xk if Out is a k-ary relation. Then A |= Π(a1, . . . , ak)
if and only if Π(A) |= Outa1 . . . ak.

Lemma 14. one-dimensional PIL∗ ≡ (PFP + H)∗ |PTIME

Proof. First note that, whenever all relations reach a fixed-

point, a PIL-program has to halt because otherwise it would

enter an infinite loop. So the formulae defining the relations in

a PIL-program can be modified such that the relations remain

unchanged whenever the formula for Halt is true. A program

of that form can be translated to (PFP+H)∗ inductively, using

simultaneous fixed-points to modify all relations at once.

Because a PFP-formula cannot modify the domain of a

structure, we represent the domain of the states of the PIL-

program by a unary relation. Instead of joining elements

with the equality formula, the PFP formula maintains a

congruence relation. The only interesting step is the translation

of counting formulae, since these formulae have to count

equivalence classes. However, it is well-known (c.f. [16]) that

counting of equivalence classes is already definable in FPC.

Thus, one-dimensional PIL∗-programs can be translated to

(PFP + H)∗ |PTIME-formulae.

To show the other direction of the equivalence, we translate

PFP-formulae to one-dimensional PIL-programs:

• Trivial for atomic formulae.

• For Boolean combinations, consider the concatenation

Π1 ◦ Π2 of two one-dimensional PIL-programs, which

can easily be defined using an auxiliary relation that indi-

685

cates which interpretation is currently applied. A program

for formulae ϕ∧ψ, ϕ∨ψ or ¬ϕ is obtained by defining

the Out-relation appropriately in the concatenation of the

programs for the subformulae.

• For ∃xϕ(x), decrease the arity of Out and define it with

ϕOut
′ = ∃xϕOut(x).

• For Hxy(ϕ(x), ψ(y)), we define the Out-relation of the

concatenation of the programs for ϕ and ψ using the

Härtig quantifier.

• For [PFPX,xϕ](x), we add a relation Xprev to the output

signature and define it with ϕXprev
(y) = Xy. The program

for ϕ is then iterated until X = Xprev.

Theorem 13 now follows from the well-known fact (see

[16]) that, in the presence of counting, polynomial-time partial

fixed-point inductions are equivalent to ordinary fixed-point

inductions: PFPC |PTIME≡ FPC.

Thus, with the Härtig quantifier, one-dimensional PIL over

two-sorted structures is equivalent to FPC.

The arguments in the previous lemma survive on com-

mon finite structures in the absence of counting, to show

that one-dimensional PIL− ≡ PFP |PTIME. However, in this

case the relationship between the polynomial-time restrictions

of partial fixed-point logic and least (or inflationary) fixed-

point logic is (probably) a different one, due to a result by

Abiteboul and Vianu [19]: PFP |PTIME ≡ LFP if and only if

PTIME = PSPACE.

Corollary 15. one-dimensional PIL− ≡ LFP if and only if
PTIME = PSPACE.

We see that both with and without counting, fixed-point

logic appears as a one-dimensional fragment of PIL and thus

CPT.

On the other side, already two-dimensional interpretations

suffice for the full power of PIL.

Theorem 16.

two-dimensional PIL ≡ two-dimensional PIL∗ ≡ PIL

Proof. It can be shown that each k-dimensional interpretation

can be simulated by a sequence of two-dimensional inter-

pretations. An interpretation logic program can apply these

interpretations sequentially. So two-dimensional PIL ≡ PIL.

The number sort of the input structure in

two-dimensional PIL∗ can be constructed by subsequently

adding elements to a specific unary relation. This only

requires two-dimensional interpretations.

Finally, let us remark that in the definition of PIL one

could also use L-interpretations for logics L which are more

expressive than FO+H. However, it turns out that PIL over

any logic L with FO+H ≤ L ≤ PIL has the same expressive

power as PIL.

Interpretations without congruences. Another interesting

fragment of PIL arises by omitting the congruences in the

interpretations. Let us first discuss the case without counting,

i.e. the logic PIL−.

Clearly, in the absence of the Härtig quantifier, it is always

possible to maintain the congruence relation as a part of the

interpreted structures in order to simulate the behaviour of a

program with congruences by a program without congruences.

It does, however, seem necessary to join elements in order

to preserve the polynomial bounds. Indeed we show that

PIL− without congruences is equivalent to the polynomial-

time restriction of whilenew. The language whilenew is an

extension of while (which, in turn, is equivalent to PFP) that

is strictly weaker than CPT, as shown by Blass, Gurevich and

van den Bussche in [20].

The language while permits statements of the form X :=
{(x1, . . . , xj) | ϕ} for FO-formulae ϕ, and, for while-

programs P1, P2, the concatenation P1;P2 and the loop while
ϕ do P1 od are while-programs. The extension whilenew

additionally allows to construct new elements with expressions

of the form Y := tup-new{(x1, . . . , xj) | ϕ}. This expression

creates a new element b for each tuple (a1, . . . , aj) satisfy-

ing ϕ, and defines Y as the relation containing all tuples

(a1, . . . , aj , b) where b is the new element associated with

(a1, . . . , aj). A program (P, q) is in whilenew |PTIME, if both

the number of atomic expressions executed and the number

of new elements created during the run of the program P on

each structure A is bounded by q(|A|).
In the following, we denote by ≈ -free PIL the fragment

of PIL without congruences.

Lemma 17. (≈ -free PIL−) ≡ whilenew |PTIME.

Proof. Let (Π, p) be a PIL[τ, σ]-program. A whilenew-

program Psim can simulate Π by modifying relations D, N
and Ri for Ri ∈ σ, where D represents the current domain of

the state of Π, and N is the relation identifying the elements

created by tup-new-statements. For every application of an

interpretation in Π, Psim creates new elements for all tuples

satisfying the domain formula, assigns these elements to D
and redefines the relations in σ according to the interpretation.

Istep is applied in that way until Halt is true.

Then each iteration of Psim corresponds to a state in the run

of Π, so there is a polynomial bound on the number of atomic

expressions executed in each run. Since each state in a run of Π
on A is bounded by p(|A|), p2 bounds the number of elements

created during the run of Psim. So there is a polynomial q such

that (Psim, q) is in whilenew |PTIME, and each ≈ -free PIL-

program can be simulated by a whilenew |PTIME-program.

Conversely, programs of whilenew |PTIME can be translated

to ≈ -free PIL inductively. Relations can of course be mod-

ified with PIL-programs. Sequential execution and loops of

PIL-programs are again PIL-programs (with and without

congruences). So the only interesting case is the creation

of new elements. As in the simulation of BGS-programs

in PIL before, we want to represent each element a that

is already in the domain by the new element (a, . . . , a).
However, this approach represents the new element associated

with a tuple (a1, . . . , aj) as the equivalence class of tuples

686

(a1, . . . , aj , b) for all b �= a1. This representation cannot be

directly transferred to the case without congruences: Even if

equalities are encoded in a relation, the number of elements

can quickly grow exponentially with a naive approach.

Therefore, we create in an initial step a sufficiently small

set of elements marked by a new predicate P , and, whenever

the whilenew-program would create new elements, introduce

one copy of the new elements for each element of P . Then

a statement Y := tup-new{(x1, . . . , xj) | ϕ} is simulated in

a way that the new element (a1, . . . , aj , b) is created if and

only if b is in P , each ai is either in the original domain or

in the copy associated with b, and (a1, . . . , aj) satisfies ϕ.

Then, whenever the whilenew-program creates m new el-

ements, the simulating PIL-program creates |P | · m new

elements, so we can find polynomial bounds for the simulating

program.

Since whilenew |PTIME is strictly weaker than CPT−, we

conclude that, without counting, congruences are necessary to

obtain the full expressive power of PIL−.

Theorem 18. (≈ -free PIL−) < PIL−.

Additionally, it is shown in [20] that CPT− is equivalent

to the polynomial-time restriction of whilesets
new, an extension

of whilenew that also allows the construction of new elements

associated with sets instead of just tuples. Together with the

equivalence between while/PFP and one-dimensional PIL,

this yields a noticeable stratification of CPT− along natural

parameters of PIL−.

Next we consider the case with counting. Here we obtain a

similar result saying that

Theorem 19. FPC < (≈ -free PIL) < PIL.

To embed FPC into (≈ -free PIL) the only difficulty is that,

in order to simulate counting terms by the Härtig quantifier, we

first have to construct the counting sort in (≈ -free PIL). The

problem is that, since we do not have congruences available, it

is no longer possible to add single new objects to the universe

of the interpreted structures. We can, however, easily overcome

this obstacle by creating not only one, but a polynomial

number of linear orderings whose lengths correspond to the

size of the input structure (by using techniques similar to the

ones we used in the proof of Lemma 17).

Moreover, to see that FPC < (≈ -free PIL) we apply a

standard padding argument. It is easy to see that also in the

absence of congruences, a (≈ -free IL)-program can create

all linear orderings on the universe of the input structure. In

particular, if structures come suitably padded by irrelevant

elements, we can define every polynomial-time property on

sufficiently small parts of the input structure in (≈ -free PIL).
Hence, a suitably padded version of the CFI-query is definable

in (≈ -free PIL) but not in FPC (cf. [10], [15]).

To establish the inclusion (≈ -free PIL) < PIL we in fact

show a more general result: on every class of structures of

bounded colour class size each program of (≈ -free PIL) can

be simulated by a CPT-program which only uses hereditarily

finite sets of bounded rank. Before we proceed, let us first

recall the notion of structures of bounded colour class size.

Definition 20. Let τ = {R1, . . . , Rd}. A q-bounded τ -

structure H is a τ � {�}-structure H = (H,RH1 , . . . , R
H
d ,�)

where � is a preorder on H of width ≤ q, i.e. where sets of
pairwise �-equivalent elements are of size at most q. We write
H = C1 � · · · � Cm where Ci denotes the i-th colour class.

Let us fix a class K of q-bounded structures (over a common

vocabulary τ). Moreover, let Π = (Π, n�) be a PIL-program

such that Π =
(Iinit, Istep

)
consists of two k-dimensional

interpretations Iinit and Istep with trivial equality formulae. In

what follows we explain how we can simulate the computation

of Π over the class K by a CPT-program which only accesses

hereditarily finite sets of bounded rank.

The main idea is to represent the elements of the structures

Hi in the run (Hi) of Π on a structure H ∈ K where H =
C1 � · · · � Cm by tuples in (n� × Hq·m) where n = |H|.
Since q is a constant and since we have given the preorder �
on H of length m it is easy to see that such objects can be

represented over H as sets of constant rank. It directly follows

that also relations over such objects are sets of bounded rank.

Hence, it suffices to show that such a representation for the

elements of the structures Hi is CPT-definable.

To see this, let us consider the step from Hi to Hi+1 in

the simulation of Π on H. We assume that we have already

represented the elements of Hi as elements in (n� ×Hq·m).
First of all, since the interpretations in Π are of dimension k
and since the domain of the structure Hi+1 is of size ≤ n�

we can easily represent the elements of Hi+1 as tuples in

(n� ×Hk·q·m). To again obtain elements in (n� ×Hq·m) we

perform the following steps. For convenience let λ := k ·q ·m.

(i) First of all we define the following strict preorder ≺ on

the set Hλ. For ā, b̄ ∈ Hλ we set ā ≺ b̄

• if there exists a position 1 ≤ j ≤ λ such that the

entries ā(j) and b̄(j) of the tuples ā and b̄ at position

j belong to different colour classes, and if for the

minimal such j we have ā(j) ∈ Cja and b̄(j) ∈ Cjb
with ja < jb,

• or, in case that ā and b̄ agree component-wise on

the colour classes, we set ā ≺ b̄ if there exists a

colour class Cj such that the equality type tja of the

tuple ā restricted to entries in Cj and the equality

type tjb of the tuple b̄ restricted to entries in Cj are

different, and if for the minimal such colour class

Cj we have tja < tjb (for some fixed linear order on

equality types).

It is easy to see that this preorder can be defined in CPT.

(ii) From the definition of ≺ it follows that each set of ≺-

incomparable elements [ā] can be characterised by

• the list of colour classes to which the entries

ā(1), . . . , ā(λ) belong, and

• the list of equality types t1, . . . , tm of the sub-

tuples (ā � C1), . . . , (ā � Cm) of ā which arise by

687

restricting to entries in C1, . . . , Cm, respectively.

Having fixed this information we can identify the ele-

ments from one class [ā] by an element in Hq·m: since

we have given the equality type tj it suffices to specify

for each colour class Cj a tuple of length ≤ |Cj | ≤ q
in order to reconstruct the whole sub-tuple (ā � Cj). To

see this observe that the equality type tj can specify at

most |Cj | ≤ q-many position to be pairwise distinct and

thus it suffices to define the values for a maximal initial

set of distinct positions.

Altogether, and since Hi+1 contains at most n� elements,

we can identify an element (x, ā) ∈ (n� × Hλ) of Hi+1

by a number ≤ n� (which simultaneously encodes the first

component x and the position of the ≺-class [ā] of the second

component ā) together with an element in Hq·m. It is easy

to see that all required operations can be defined in CPT by

using sets of bounded rank.

Theorem 21. On every class K of q-bounded structures, each
(≈ -free PIL)-program can be simulated by a CPT-program
which only accesses sets of bounded rank.

In [13] Dawar, Richerby and Rossman show that CPT
can define the well-known isomorphism problem for the Cai,

Fürer, Immerman graphs (which are 2-bounded structures).

Moreover, they show that this query cannot be expressed by a

CPT-program which only uses sets of bounded rank. Together

with Theorem 21 this implies that (≈ -free PIL) < PIL =
CPT and thus finishes our proof of Theorem 19.

VIII. CONCLUSION

We presented polynomial-time interpretation logic PIL as

an alternative characterisation of Choiceless Polynomial Time.

PIL is based on the iteration of logical interpretations and is

equivalent to CPT in the variants with and without counting.

First applications of our result give further evidence that

Choiceless Polynomial Time is a very natural extension of

fixed-point logic with counting. We presume that our, in

a sense more model-theoretic, approach makes Choiceless

Polynomial Time more accessible to the tools of finite model

theory.

Of course, the fundamental open question about CPT (or

PIL) remains: can this logic express all polynomial-time

decidable properties of finite structures? A natural way to

proceed is to identify richer and richer classes of structures

on which PIL suffices to capture PTIME. This study is closely

connected with the quest for efficient graph isomorphism tests

and graph canonisation algorithms, see e.g. [14]. To express

such algorithms as procedures in CPT it seems necessary

to invent novel CPT-data structures which can represent

certain algebraic objects (more precisely, cosets of permutation

groups) in a succinct way. Our characterisation of CPT by

polynomial-time interpretation logic might lead to new ideas

for the design of such data structures as it gives a completely

new picture on the kind of objects that CPT can create and

manipulate.

Moreover, as we saw in Section VII, by the equivalence of

CPT and PIL we obtain new and surprising insights into the

structure of the logic Choiceless Polynomial Time by consid-

ering stratifications of PIL along natural parameters. Besides

those fragments of PIL that we covered in Section VII, we

aim to study other such fragments, like the k-variable fragment

or fragments with bounded quantifier rank. Of course, it is

also very interesting to clarify the relationship between the

expressive power of (such fragments of) PIL and Rank Logic.

Another intriguing question is whether the model compari-

son problem for such fragments L ≤ PIL can be decided in

polynomial time, i.e. whether equivalence in L can be used

as an efficient approximation for the structure isomorphism

problem. Finally, it would also be very interesting to develop

game-theoretic methods which characterise these relations in

the style of Ehrenfeucht-Fraı̈ssé games.

REFERENCES

[1] E. G. et. al., Finite Model Theory and Its Applications. Springer, 2007.
[2] M. Grohe, “The quest for a logic capturing PTIME,” in LICS 2008,

2008, pp. 267–271.
[3] A. Chandra and D. Harel, “Structure and complexity for relational

queries,” Journal of Computer and System Sciences, vol. 25, pp. 99–
128, 1982.

[4] M. Grohe, “Fixed-point definability and polynomial time on graphs with
excluded minors,” Journal of the ACM (JACM), vol. 59, no. 5, p. 27,
2012.

[5] M. Anderson, A. Dawar, and B. Holm, “Maximum matching and linear
programming in fixed-point logic with counting,” in LICS 2013, 2013,
pp. 173–182.

[6] J. Cai, M. Fürer, and N. Immerman, “An optimal lower bound on the
number of variables for graph identification,” Combinatorica, vol. 12,
no. 4, pp. 389–410, 1992.

[7] A. Atserias, A. Bulatov, and A. Dawar, “Affine systems of equations
and counting infinitary logic,” Theoretical Computer Science, vol. 410,
no. 18, pp. 1666–1683, 2009.

[8] A. Dawar, M. Grohe, B. Holm, and B. Laubner, “Logics with rank
operators,” in LICS 2009, 2009, pp. 113–122.

[9] A. Dawar, E. Grädel, B. Holm, E. Kopczynski, and W. Pakusa, “Defin-
ability of linear equation systems over groups and rings,” LMCS, vol. 9,
no. 4, 2013.

[10] A. Blass, Y. Gurevich, and S. Shelah, “Choiceless polynomial time,”
Annals of Pure and Applied Logic, vol. 100, no. 1, pp. 141–187, 1999.

[11] Y. Gurevich, “Logic and the challenge of computer science,” in Current
Trends in Theoretical Computer Science, E. Börger, Ed. Computer
Science Press, 1988, pp. 1–57.

[12] B. Laubner, “The structure of graphs and new logics for the characteri-
zation of polynomial time,” Ph.D. dissertation, Humboldt Universität zu
Berlin, 2011.

[13] A. Dawar, D. Richerby, and B. Rossman, “Choiceless polynomial time,
counting and the Cai–Fürer–Immerman graphs,” Annals of Pure and
Applied Logic, vol. 152, no. 1–3, pp. 31 – 50, 2008.

[14] F. Abu Zaid, E. Grädel, M. Grohe, and W. Pakusa, “Choiceless
Polynomial Time on structures with small Abelian colour classes,” in
Mathematical Foundations of Computer Science 2014, ser. Lecture Notes
in Computer Science. Springer, 2014, vol. 8634, pp. 50–62.

[15] A. Blass, Y. Gurevich, and S. Shelah, “On polynomial time computation
over unordered structures,” Journal of Symbolic Logic, vol. 67, no. 3,
pp. 1093–1125, 2002.

[16] M. Otto, Bounded Variable Logics and Counting. Springer, 1997.
[17] B. Rossman, “Choiceless computation and symmetry,” in Fields of logic

and computation. Springer, 2010, pp. 565–580.
[18] W. Hodges, Model Theory. Cambridge University Press, 1993.
[19] S. Abiteboul and V. Vianu, “Computing with first-order logic,” Journal

of computer and System Sciences, vol. 50, no. 2, pp. 309–335, 1995.
[20] A. Blass, Y. Gurevich, and J. V. den Bussche, “Abstract state ma-

chines and computationally complete query languages,” in Abstract State
Machines-Theory and Applications. Springer, 2000, pp. 22–33.

688

