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Separation logic is a successful logical system for formal reasoning about programs that
mutate their data structures. It goes back to work by Reynolds, O’Hearn, Pym and others
[18, 10, 14] and builds on Hoare logic [8], a system for proving specifications of form
{precondition}code{postcondition} about how a piece of code changes the properties of the
states of a computation. Traditional Hoare logic works very well for programs with simple
fixed data types, but reasoning about programs with mutable data structures becomes
complicated and problematic, and this is the main issue that is addressed by separation
logic. Actually, separation logic is part of a larger family of logics with bunched implications
[13, 16, 15], but to get the point of this paper across, which is the connection with team
semantics, we consider a stripped down presentation of separation logic, as used for instance
in [6, 17], viewing separation logic as an extension of first-order logic for reasoning about
heaps (modelled as partial functions h : A → Ak) whose expressive power arises from two
non-standard logical connectives: the separating conjunction, and the magic wand. With
these new connectives one can write concise specifications of recursive data structures such
as doubly linked lists, trees with linked leaves and parent pointers, and so on, and reason in
the style of Hoare logic about the semantics of programs with such data structures [18].

More precisely, we define for any k ≥ 1 the separation logic SLk as the extension of
first-order logic by two new atomic formulae emp and x 7→ y, and the new connectives ? and
−∗. A formula ψ(z) ∈ SLk of vocabulary τ is interpreted over a triple (A, h, s), consisting of
a τ -structure A, a finite partial function h : A→ Ak on the universe of A, called a heap, and
an assignment s : free(ψ)→ A mapping the free variables of ψ to elements of A. The atom
emp expresses that the heap is empty, and x 7→ y is true in (A, h, s) if the heap h consist
of the single item s(x) 7→ s(y1), . . . , s(yk). Using the traditional first-order connectives and
quantifiers, together with the separating conjunction and the magic wand, one then builds
powerful statements describing dynamic transformations of data structures. The separating
conjunction ψ ? ϕ asserts that there is a disjoint split of the heap h into two disjoint heaps
satisfying ψ and ϕ, respectively, and the separating implication or magic wand ψ−∗ ϕ states
that ϕ is true for any extension h ∪· h′ of the given heap h by a heap h′ that satisfies ψ.

Since separation logic is an extension of first-order logic, the fundamental algorithmic
problems such as (finite) satisfiability, validity, or entailment are, of course, undecidable. For
both theoretical and practical purposes it is interesting to classify fragments of separation
logic for which such problems become decidable, and to determine their complexity, and on
the other side to identify those fragments that are expressively complete, and thus as difficult
to handle as full separation logic. Such work has been done for instance in [3, 4, 5, 6].

Team semantics, on the other side, is the mathematical basis of modern logics for reasoning
about dependence, independence, and imperfect information. It originates in the work of
Wilfrid Hodges [9], and relies on the idea to evaluate logical formulae ϕ(x1, . . . , xn) not for
single assignments s : {x1, . . . , xn} → A from the free variables to elements of a structure A,
but for sets of such assignments. These sets, which may have arbitrary size, are now called
teams. Together with the fundamental idea of Väänänen [19] to treat dependencies not as
annotations of quantifiers (as in IF-logic), but as atomic properties of teams, this has lead to
a lively interdisciplinary research area, involving not just first-order logics, but also logics on
the propositional and modal level, see e.g. [1]. Team semantics admits reasoning about large
sets of data, modelled by second-order objects such as sets of assignments, with a first-order
syntax that does not explicitly refer to higher-order variables. In the presence of appropriate



2 Separation Logic and Logics with Team Semantics

atomic team properties, such as dependence, inclusion and exclusion, or independence, team
semantics can boost the expressiveness of first-order formalisms to the full power of existential
second-order logic or, in the presence of further propositional operators such as different
variants of implication or negation, even to full second-order logic (SO). There are several
reasons for this high expressive power of logics of dependence and independence. One of
them is the second-order nature of atomic dependencies in teams. For instance, saying that
z depends on y in the team X means that there exists a function which, for all assignments
s ∈ X, maps s(y) to s(z). A further reason is that in the context of teams, disjunctions
and existential quantification are really second-order operations. Note, however, that only
the combination of dependence atoms and disjunction/existential quantification leads to
the expressive power of (existential) SO. We write A |=X ϕ to denote that ϕ is true in the
structure A for the team X. In this extended abstract we assume that the reader is familiar
with the basic definitions of team semantics, and results are given without proofs. Detailed
definitions and complete proofs will be given in the full version of this paper.

Connections and differences. Separation logic and team semantics have been introduced
with quite different motivations, and are investigated by research communities with rather
different backgrounds and objectives. Nevertheless, there are obvious similarities between
these formalisms. First of all, both separation logic and logics with team semantics involve
the manipulation of second-order objects, such as heaps and teams, by first-order syntax
without reference to second-order variables. Moreover, these semantical objects are closely
related; it is for instance obvious that a heap, i.e. a partial function h : A → Ak, can be
seen as a team with variables x, y1, . . . , yk satisfying the atom that y depends on x. Even
more strikingly, the separating conjunction of separation logic is (essentially) the same as
the team-semantical disjunction; moreover several notions of implications have been studied
for team semantics, so it seems natural to interpret also the magic wand in this context.
Based on such similarities, the possible connections between separation logic and team
semantics have been raised as a question at several occasions, and lead to informal discussions
between these research communities. The objective of this paper is to make this connection
precise, and to study its potential but also its obstacles and limitations. We remark that
the point of connecting separation logic with team semantics is not just expressive power.
Actually, both separation logic and the logics with team semantics that we need here can
readily be embedded into second-order logic (SO), and it is not difficult to see that they
indeed essentially have the full power of SO. But going through second-order logic does not
provide informative and compositional translations between these frameworks, and would
thus produce only very limited insights. Rather we aim for a natural set of team-semantical
operators that admit us to construct a faithful, complete and compositional representation
of separation logic into a suitable logic with team semantics.

At least when we consider logics of dependence and independence in their standard format,
there are also important differences to the framework of separation logic. This standard
format is based on a collection of atomic dependencies on teams, typically dependence,
inclusion, exclusion and/or independence, together with the usual first-order literals, and
extends these by conjunction, disjunction, existential and universal quantifiers. In particular,
these logics are not closed under negation, which is the first essential difference to separation
logic. In fact, in logics of dependence and independence, negation is applied only to first-order
atoms, not to dependencies or to compound formulae. Although one can define, for any
formula ϕ, a kind of negation ϕ¬, its meaning is not the same as the classical negation and,
in particular, the law of the excluded middle (tertium non datur) does not hold, not even
for atomic formulae. A second relevant issue is the empty team property of these logics:
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every formula whatsoever is satisfied by the empty team. This is a source of some technical
difficulties in translations from separation logic to logics with team semantics, and excludes
in particular the representation of the empty heap by the empty team.

Team logic for separation logic. To make translations from separation logic into team
semantics possible, we consider the syntactic extension of separation logic by the dual
connectives to the separating conjunction and the magic wand, the separating disjunction
ψ ◦ ϕ and the septraction ψ ( ϕ, so that we can write all formulae of separation logic in
negation normal form. This is a conservative extension that does not change the expressive
power of the logic. We then discuss which of the ingredients of logics with team semantics
are needed for achieving the expressive power of separation logic, and in particular, how the
standard framework should be extended so that all of separation logic can be translated in
a natural way. Of specific importance for the the translation that we propose are the non-
emptiness atom NE, the uniform quantifiers ∃1 and ∀1, classical and dependent disjunctions
and the intuitionistic implication. Although these operators are not part of what we call the
standard framework of logics of dependence and independence, they have been studied quite
thoroughly in team semantics, for instance in [2, 7, 12, 20].
Nonemptiness: A |=X NE if X 6= ∅.
Finiteness: A |=X Fin(x) if X(x) is finite.
Equiextension: A |=X x ./ y if X(x) = X(y).
Classical disjunction: A |=X ϕ t ψ if A |=X ϕ or A |=X ψ.
Uniform quantification: These are the usual quantifiers of FO, lifted to the team level:

A |=X ∃1xϕ if A |=X[x 7→{a}] ϕ for some a ∈ A, and
A |=X ∀1xϕ if A |=X[x 7→{a}] ϕ for all a ∈ A.

Dependent disjunction: A |=X ϕgx ψ if there is a disjoint decomposition X = X1 ∪· X2
satisfying A |=X1 ϕ and A |=X2 ψ such that for all s, s′ ∈ X, if s ∈ Xi and s(x) = s′(x)
then also s′ ∈ Xi.

Intuitionistic implication: A |=X ϕ→ ψ if, for all teams Y ⊆ X with A |=Y ϕ, also A |=Y ψ.

We remark that in dependence logic, i.e. first-order logic with dependence atoms dep(x; y)
some of these connectives are expressible. The addition of NE, classical and dependent
disjunctions, and the uniform quantifiers produces an expressively modest extension of
dependence logic that remains inside the existential fragment of second-order logic. The
further addition of the intuitionistic implication ϕ → ψ changes this, but it is needed for
expressing the magic wand and the separating disjunction, which are universal second-order
connectives. We note that the finiteness atom (which is necessary when we consider finite
heaps that take values in an infinite structure) is easily expressible through dependence,
equiextension, and intuitionistic implication, by means of Dedekind-finiteness. To summarize,
the specific logic with team semantics that we are going to use for a compositional translation
of separation logic is defined as follows.

I Definition 1. Team logic for separation logic, abbreviated TLfSL, is the extension of
dependence logic by NE,t,∀1, and the intuitionistic implication →. Note that ∃1, dependent
disjunction, equiextension, and the finiteness atoms are definable in it, and will also be used.

From heaps to teams. We next discuss how the semantic objects for separation logic,
i.e. triples (A, h, s) consisting of a structure A, a heap h, and an assignment s, should be
represented by the semantic objects in team semantics, i.e. pairs (B, X) consisting of a
structure B and a team X. We will then want to provide translations, mapping any formula
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ϕ ∈ SL (in negation normal form) to a formula ϕ∗ ∈ TLfSL such that, whenever (B, X)
represents (A, h, s), we have that A, h |=s ϕ if, and only if, B |=X ϕ∗.

We start with the natural idea to view a heap h : A⇀finA
k as a team over the variables

x, y1, . . . , yk, and to represent a triple (A, h, s) by a pair (A, Yh,s), leaving the structure A

unchanged and expanding the team representing the heap by the values representing the
assignment s, to obtain an expanded team Yh,s.

I Definition 2. For a heap h : A⇀finA
k and an assignment s : {z1, . . . , zm} → A, the team

Yh,s consists of all assignments t : {x, y1, . . . yk} ∪· {z1, . . . , zm} → A such that t(x) ∈ dom(h),
t(y) = h(t(x)) and t(zi) = s(zi). Notice that the team Yh,s fulfils the dependence atom
dep(x; y1, . . . , yk) and the constancy atoms dep(z1), . . . ,dep(zm).

Although Yh,s is a natural representation of the pair (h, s), this idea is too simple to
work well. Any pair (h, s) where the heap is empty is represented by the empty team, so all
information about the assignment s is lost. Moreover, the standard logics of dependence and
independence have the empty team property, and even logics as strong as team logic, which
have classical negation (and hence do not have the empty team property) cannot express
anything useful about the given structure in the presence of the empty team [11]. To take
care of the problems arising with the empty team we add a dummy element δ to A to obtain
the structure Aδ with universe A ∪· {δ} such that, for every relation symbol R ∈ τ , we set
RAδ := RA and for any function symbol f ∈ τ , we let fAδ coincide with fA on all tuples
from A, and map all other tuples to δ. We extend the vocabulary by a new constant symbol
δ interpreting the dummy element and add a dummy assignment to the team.

I Definition 3. Given a structure A and some element δ 6∈ A, a triple (A, h, s) is now repres-
ented by the pair (Aδ, Xh,s) where Xh,s := Yh,s ∪ {sδ} with sδ(x) = sδ(y1) = · · · = sδ(yk) = δ

and sδ(zi) = s(zi) for i = 1, . . . ,m. Note that for any assignment s : {z1, . . . , zm} → A we
have that X∅,s = {sδ}.

Based on the presentation of triples (A, h, s) by (Aδ, Xh,s) it is not difficult to translate
the first-order part of separation logic to the extension of dependence logic with the uniform
quantifiers ∃1 and ∀1, the classical disjunction t, the non-empty split disjunction and the
non-emptiness predicate NE.

Splitting and extending heaps and teams. The translation of the separating conjunction
ψ ? ϕ into team semantics requires that we are able to talk about splits of a heap h on the
level of teams X∗h,s. We do this by defining the formula

split(x, c) := [(c = δ∧NE)∨(c 6= δ∧dep(c)∧NE)]∧[(x = δ∧(NEgcNE))∨(x 6= δ∧dep(x; c))].

For any triple (A, h, s) and any function F : Xh,s → P+(A∪{δ}), we have that Aδ |=Xh,s[c 7→F ]
split(x, c) if, and only if, there is an element a ∈ A and a split (h1, h2) of h such that
Xh,s[c 7→ F ] = Xh1,s[c 7→ δ] ∪Xh2,s[c 7→ a]. The separating conjunction is translated as

(ϕ ? ψ)∗ := ∃c
(

split(x, c) ∧
(
(c = δ ∧ ϕ∗) ∨ (c 6= δ ∧ ψ∗)

))
.

We next discuss the translation of the septraction ψ ( ϕ. Recall that A, h |=s ψ ( ϕ

if there exists a disjoint extension h ∪· h′ with A, h′ |=s ψ and A, h ∪· h′ |=s ϕ. We have
to represent extensions of the given heap h by appropriate extensions of the encoding team
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Xh,s. We need a formula that says that a team Y , restricted to variables (x, y), correctly
encodes a heap. This is achieved by

heap(x, y) := dep(x; y) ∧ Fin(x) ∧
(
(x = δ ∧ y = δ ∧ NE) ∨ (x 6= δ ∧

k∧
i=1

yi 6= δ)
)
.

For a given formula ϕ of separation logic, and its translation to ϕ∗ to a formula with
team semantics, let ϕ∗[u, v] be obtained from ϕ∗ by renaming x, y to new variables u, v
(whereas the variables z representing the assignment s are left unchanged). We now construct
a formula to talk about disjoint extensions of the given heap by a heap that satisfies ϕ.

ϕext(x, y, u, v) :=
(

(x = δ ∧ heap(u, v) ∧ ϕ∗[u, v]) ∨ (x 6= δ ∧ u = x ∧ v = y)
)
∧ dep(u;x)

The translation of ϕ ( ψ now asserts that ψ is true in some disjoint extension of the
given heap by a heap that satisfies ϕ:

(ϕ( ψ)∗ := ∃u∃v(ϕext(x, y, u, v) ∧ ψ∗[u, v]).

Translating the separating disjunction and the magic wand. We finally discuss the trans-
lation of the two connectives that involve a universal quantification about heaps. It is clear
that these are not definable in the existential fragment of second-order logic, and the natural
way to go is to extend dependence logic by the intuitionistic implication ψ → ϕ. But notice
that this is a quite different kind of implication than the magic wand, and the translation is
far from obvious. Recall that

A, h |=s ϕ−∗ ψ ⇐⇒ for every heap h′ with h#h′ and A, h′ |=s ψ, also A, (h ∪· h′) |=s ψ

A |=X ϕ→ ψ ⇐⇒ for every subteam Y ⊆ X with A |=Y ϕ, also A |=Y ψ

where h#h′ means that h and h′ are disjoint, i.e. dom(h) ∩ dom(h′) = ∅.
We start with the idea to use a universal variant of the translation of septraction, i.e.

∀u∀v(ϕext(x, y, u, v)→ ψ∗[u, v]). Intuitively, in the evaluation of this formula over Xh,s, the
universal quantification generates a team Y that represents a maximal extension of the given
heap h. The implication then says that all subteams of Y that represent an extension by a
heap h′ that satisfies ϕ must also satisfy ψ. But this is not really correct, because left side of
the implication can also be true for subteams that do not contain all the data present in
h i.e. represent an extension not of h, but of some subheap. We thus have to restrict the
left side of the implication so that it talks only about those subteams that contain the full
information of the team Xh,s. To achieve this, we construct a formula in two variables x, x′
that enforces a cyclic permutation of the values of x in the team. We set

cycle(x, x′) := x ./ x′ ∧ dep(x;x′) ∧ dep(x′;x) ∧ (x ./ x′ → ((x = δ ∧ NE) ∨ x 6= δ)).

A finite team Z with dom(Z) = {x, x′} is a model of cycle(x, x′) if, and only if, there
is a cyclic permutation (a0, . . . , am−1) of Z(x) = Z(x′) such that Z = {s0, . . . , sm−1} with
si(x) = ai and si(x′) = ai+1(mod m). As a consequence, if Y ⊆ Z is a non-empty subteam of
such a model with |=Y x ./ x′ then Y = Z. We then translate the magic wand ϕ−∗ ψ by

(ϕ−∗ ψ)∗ := ∃x′
(

cycle(x, x′) ∧ ∀u∀v
(
(NE ∧ x ./ x′ ∧ ϕext(x, y, u, v))→ ψ∗[u, v]

))
.
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For the translation of the separating disjunction ϕ ◦ ψ, a similar idea is used, based on
the formula split(x, c). We put

(ϕ ◦ ψ)∗ := ∃x′
(

cycle(x, x′) ∧ ∀c
(
(NE ∧ x ./ x′ ∧ split(x, c))→(
((c = δ ∧ ϕ∗) ∨ c 6= δ) t ((c 6= δ ∧ ψ∗) ∨ c = δ)

))
.

We summarize our findings:

I Theorem 4. There is a compositional translation that maps any formula ϕ ∈ SL into a
formula ϕ∗ ∈ TLfSL such that (A, h) |=s ϕ ⇐⇒ Aδ |=Xh,s

ϕ∗, for every triple A, h, s.
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