Network Design with Selfish Agents
GI Seminar Report, Dagstuhl 2004

Lukasz Kaiser

Mathematische Grundlagen der Informatik
RWTH Aachen

1 Introduction

In the study of multi-player games it is usual that a network, a graph of some kind
must be constructed and agents need to pay for the construction of the network
together. There is a large number of practical scenarios where this situation
occurs, for example when internet or telephone connections are created or when
multiple transport companies have to pay for the communication network.

To illustrate the situation we will consider sea transport companies or broad-
band internet providers. We choose such scenarios as we do not want to analyse
the problem of limited capacities of network connections, so each connection in
our network is either bought by the companies and can be used as much as nec-
essary or it is not used at all. Accordingly, each connection has a constant cost
and we will say that it is bought if all companies together decide to pay for it
the price that covers the cost.

Each company has a few users or ports and it has to ensure that these will be
connected, it is not possible that any of these places will be disconnected from
any other. We do not know how each company, or in a more general setting -
each agent, will decide how much to pay for a connection, but we assume that
they are selfish. It is not possible that companies will negotiate or communicate
in some way to find the optimal solution, in network connection games they act
only to maximise their own benefit, to minimise the cost necessary to connect all
the places that must be connected. In such setting everyone will go for a cheaper
price if possible.

The situation when no one can gain anything by changing his payments is
called an equilibrium. When no external mechanism or regulation is present,
unrestricted selfishness might lead to situations where it is impossible to find an
equilibrium or the total payment of all companies in any equilibrium is much
higher than the possibly optimal one. We call the ratio between cost of the best
solution that everyone can agree on and the globally optimal solution the price
of stability and the ratio between the worse solution that everyone agrees on and
the optimal is the price of anarchy.

When the price of stability is high, so the selfishness of agents can lead to
serious loss, we can introduce some mechanism to handle problematic situations.
There are many kinds of mechanisms with different properties, of which the
marginal cost and Shapley value are most important for network design games.



We will not discuss the design of mechanisms here, we will just introduce fair
connection games that make use of a simple mechanism based on Shapley value.
It turns out that even such simple mechanism can cope with many problems
that unlimited selfishness poses and lead to quite good solutions.

Mechanisms and their properties were studied in detail in multiple scenarios,
an overview of the results relevant for cost sharing by network construction can
be found in [4]. Multi-player games where network costs are analysed were used
in multiple scenarios cite like congestion, load balancing, routing and facility
location, for example in [6-8, 3].

2 Notation

We will model the considered network as an undirected graph G = (V, E) where
vertices correspond to the places that need to be connected and edges correspond
to possible connections. Each edge e has therefore a cost denoted by c(e). We
assume that there are N agents and each agent i has an assigned set V; C V of
vertices he needs to connect.

We want to model the process where agents declare payments for each con-
nection and buy them if the declared payment exceeds the cost of the connection.
The bought connections form a network where each agent’s vertices V; have to
be connected. We will model it as a play between the agents where everyone
fights to minimise his total payment and we will call this a connection game.

Therefore we will say that a strategy p; of an agent or player i is a function
that assigns to each edge e a real-valued payment p;(e). In fair connection games
the agents will not declare payments but only choose a set of edges they want
to use and the payment will be computed according to a mechanism, which we
will discuss later.

We will say that a play is a tuple of strategies of all players, p = (p1,....pN)
and p induces a graph G, = (V, E,) of bought edges

ec B, — Zpi(e) > c(e).

We will say that a play p is correct for player 7 if V; is connected in G, and we
will say that it is correct if it is correct for all players.

The goal of the agent ¢ is to minimise his total payment, which is defined for
player ¢ with respect to a strategy p; as

We will also sometimes use the total payment of all players given a play p as a
sum of payments of all players using their strategies,

Py=Pi+...+Py.

We are interested in situations when all players agree to play their strategy,
so no player can decrease his payment by changing the strategy when strategies



of other players remain unchanged. This corresponds to the well-known notion
of (pure) Nash Equilibrium, but we have to take into account that only correct
games are considered.

Therefore a play p is a (pure) Nash equilibrium if p; minimises the total
payment of player i necessary for a play that is correct for him. This must hold
for each player ¢ when all p; remain unchanged for j # i. Additionally a play
p is an c-approximate Nash equilibrium if each player can decrease the total
payment only by a factor of ¢ by choosing a different strategy.

More formally p = (p1,...,pn) is a (pure) Nash Equilibrium if for any player
i and any alternative strategy p/, for this player if the play p’ = (p1,...,p},...,PN)
where only player ¢ changed his strategy is correct for ¢ then P, > P,. The
play is a c-approximate Nash Equilibrium if analogous property holds but with
¢* Py > P, and of course we consider ¢ > 1.

To define formally the price of anarchy and the price of stability let us con-
sider the globally optimal solution in a game, so let ¢y be the smallest payment
P, among all possible plays p. Further let ¢, be the smallest payment P, among
all possible plays ¢ that are Nash Equilibria and let ¢4, be the biggest of these
payments. Then the price of stability is defined as C‘()—; and the price of anarchy

Cay
asﬂ'
Copt

3 Connection Games

We have defined what connection games are and adopted Nash Equilibria to
such games, let us now look at a few basic properties of such equilibria in these
games.

If p is a Nash equilibrium and T* is the tree in G, that connects all vertices
of player i (i.e. V;), then the following holds:

(i) each player i only contributes to costs of edges in T*,
(ii) each edge in Gy, is either fully paid for or not at all,
(iii) Gy is a forest.

Indeed, for the first point please note that if player i contributed to some edge
outside T then he could decrease his payment by refusing to pay for that edge
and his vertices would remain connected by T¢. Also if there was an edge that
would not be fully paid for or that creates a cycle then the players could refuse
to pay for it at all without disconnecting any vertices.

In basic connection games as we defined them (pure) Nash Equilibria do not
always exist. To see it please look at Figure 1 where s; and t; belong to player
1 and so and t2 belong to player 2 and each edge has cost 1. We can assume
without loosing generality that the path t5 — s; — s — 1 was bought by the
players. According to the above properties the path s — 1 is fully paid for by
player 1 as it is not in 72 and to — s; is fully paid for by player 2 as it is not in
T*. Let us assume that player 1 (or symmetrically player 2) pays some non-zero
amount for s; —ss. Then he can stop paying anything for this edge and for so —t;



Fig. 1. Nash Equilibria do not Always Exist

for which he paid 1 and instead just buy t2 —¢; for 1. In this way the player can
always decrease his payment, so no Nash Equilibrium is possible in this game.

To see that the price of anarchy can be as high as N please look at Figure
2 and notice, that if each player buys one of the edges on the leftmost path,
each one paying 1, then no one can gain by changing the strategy so it is an
equilibrium. Still all players could buy the edge on the right together, with
everyone paying only %, which is also an equilibrium with a much lower total
cost.

The biggest problem with connection games is that not only the price of
anarchy but also the price of stability can be high. Looking at Figure 3 you
can see that the optimal (lowest) total cost is 1 + 3e when the players but the
leftmost path and three of the e-edges in the square on the right. But the lowest
cost achieved in an equilibrium is N — 2 when the players buy the two edges
with cost % — 1 — ¢ and two € edges in the right square. No three edges in the
e-rectangle can be paid for by any equilibrium for the same reasons as discussed
by Figure 1.

To overcome the problem with the high price of stability we can either in-
troduce a simple mechanism to assign payments, what we will discuss in the
context of fair connection games, or analyse a restricted class of connection
games, namely single source connection games, where the price of stability is 1.

In general connection games we already know that the price of stability is
high, near the upper bound N where the player can buy the whole optimal tree
himself. Still there are some positive results with approximate equilibria.

Theorem 1 ([2]). In each connection game a 3-approximate Nash Equilibrium
exists and can be computed in exponential time. In polynomial time we can com-
pute a (4,55 + €)-approzimate equilibrium.

The lower bound for approximate Nash Equilibria in connection games is %,

meaning that there exist a sequence of games that any equilibrium purchasing
the optimal solution must be (in the limit) (2)-approximate.



Fig. 2. Price of Anarchy is N

Even though there always are approximate Nash Equilibria it is still inter-
esting to know if in a given game there exists any strict Nash Equilibrium and
how complex it is to calculate it.

Theorem 2 ([2]). Determining the existence of a Nash FEquilibrium in a con-
nection game in NP-hard if the number of players is a part of the input.

Proof. To prove this theorem we will use a reduction to 3-SAT and the two
kinds of gadgets presented on Figure 4. The gadgets of the first kind will be
constructed for each variable z; occurring in the 3-SAT formula from which we
reduce and we will say that player ¢ that needs to connect s; and ¢; in this gadget
is a variable player for variable x;. In each variable gadget we have two edges
labelled with e;r and e;r as presented on the picture and when an assignment of
variables is given we will say that e;7 was assigned if x; is true and that e;p was
assigned in the other case. The gadgets of the second kind will be constructed
for each clause in the formula and clause players will play in these gadgets.

The middle edges in the clause gadget are the same as edges in the corre-
sponding variable gadgets that are labelled accordingly, for example on Figure
4 the clause gadget represents the clause

-1V xe Vg

and the edge labelled with e is the same edge as the one in the variable gadget
for z; labelled in the same way.



53, - m

Fig. 3. Price of Stability is about N — 2

Let us now assume that the formula has a satisfying assignment and let each
variable player pay the full cost of the path that contains the assigned edge. Since
in each clause gadget one of the middle edges is now paid for by the variable
player each clause player can now use it and connect the vertices he needs to
connect by fully paying for two edges inside the gadget. It is easy to check that
this is indeed a Nash Equilibrium in the presented connection game.

Let us now assume there is a Nash Equilibrium in the connection game. First
we have to notice that the edges on the perimeter of clause gadgets are not used
at all in any Nash Equilibrium. To see this one can use use arguments similar
to those used to show that there is no Nash Equilibrium in the game presented
on Figure 1 or just enumerate all possible cases. You should also note that no
clause player will pay more than 2 in any Nash Equilibrium as he can connect
his vertices using the two edges on the perimeter.

Therefore in each clause there must be at least one middle edge that will be
fully paid for by the variable player. But no variable player ¢ will pay for both
e;r and e;7 in an equilibrium as he clearly needs to pay only for one of these.
So if a Nash Equilibrium exists then each variable player pays for just one edge
and the corresponding assignment satisfies each clause as in each clause gadget
one of the middle edges has to be paid for by the variable player. This concludes
the proof.

Please note that in the special case of a connection game with two players
each with two vertices the equilibrium can be found in polynomial time [2].

4 Single Source Connection Games

Let us now consider a class of connection games where each player can have
only two vertices to connect and one of them is common for all players. We will
denote the common vertex by s and the other vertices by {¢1,...,tx} and T*
will be the minimum cost (Steiner) tree rooted at s and containing {¢1,...,tx}.



Fig. 4. Equilibrium Existence is NP-hard

By definition paying for T* is the optimal solution in such game and we will
show that indeed there is a Nash Equilibrium where players pay exactly for T™*.
Let us first define the games we want to describe and state the theorem.

Definition 1. Single source connection games are such connection games, where
all players share a common vertex s and in addition each player has exactly one
other vertex t; to connect to s, so V; = {s,t;} for each player i.

Theorem 3 ([2]). In a single source connection game there is a Nash Equilib-
rium purchasing the minimum cost tree T* containing {s,t1,...,tn} and there-
fore the price of stability is 1.

To prove this we will present an algorithm that constructs the Nash Equilib-
rium by assigning what each player should pay for each edge. In the algorithm
we will be going in reverse breadth-first search (BFS) order through edges in T*
and in each step we will set payments of all players for the considered edge.

Let us first introduce some concepts and notation used in the algorithm.
When p;(e) is the payment of player i for edge e at the given point of the run of
the algorithm (we start with p;(e) = 0 and increase them), then the payment of
player ¢ for the tree T* at this point is defined as

pi(T*) =Y pile),

ecT*



and the total payment for the edge e at this point is defined as
ple) => pile).
i

When considering an edge e we will denote the subtree of 7 disconnected from
s when e is removed by T,.

Since we assign the payments dynamically during the run of the algorithm
we will also consider the modified costs for player i defined with respect to what
the player has already paid for T* and are defined as

pi(e) for e € T™,

¢(e) = {c(e) for e & T*.

Now we can present Algorithm 1 that assigns payments to players buying
the whole tree T*.

Algorithm 1 Payment Construction Algorithm

Initialise p;(e) = 0 for all players and edges.
for all edges e in T™ in reverse BFS order do
for all players i with ¢, € T. do
repeat
if e is a cut in G then
set pi(e) = c(e)
else
let x; be the cost of the cheapest path A from s to ¢; in G\{e} under the
modified costs ¢,
set pi(e) = min{x; — p:(T"),c(e) — p(e)}
end if
until e is fully paid for
end for
end for

Please first notice that the above algorithm returns a Nash Equilibrium if it
terminates. To see it assume the contrary, namely that there is a possibility for
player ¢ to pay less and keep t; connected with s. In such case these is an edge e
in T™* for which ¢ now refuses to pay and instead chooses to pay for some cheaper
alternate path A. Let us return to the moment during the run of the algorithm
when ¢ decided to pay for e. Please notice that at that moment, what he paid
for e was less than the cost of any alternate path minus what ¢ has paid for T*
below e. This contradicts the existence of the cheaper path A, so the output of
the algorithm is indeed a Nash Equilibrium.

Before we start to prove that the above algorithm succeeds to pay for each
edge please take a look at Figure 5 that presents the situation during the run of
the algorithm.

In this situation we assume that at some point players with vertices in T, are
unwilling to pay for one of the edges e as depicted on the figure. For each player



@

Fig. 5. Situation During the Run of the Algorithm

i with V; N T. # () there is an alternate path A; explaining his unwillingness to
pay for e. If more than one such path exists, we choose one including as many
ancestors of the player i’s vertex t¢; as possible.

In such situation inside the algorithm x; = ¢/(4;) and using this fact we will
build a cheaper tree than T* from these paths and thus reach a contradiction.
To complete the proof we need the following path lemma.

Lemma 1. When A; is an alternate path as chosen before then it has precisely
three segments, one in T, one in E\T* and the rest in T*\T,.

Proof. Please first note that once A; reaches T*\T. then it remains there as
edges there have cost ¢(f) = p;(f) = 0 since the algorithm runs in reverse BFS
order and did not visit these edges yet.

Suppose that A; leaves T, and returns to T, and we will show that this leads
to a contradiction with the choice of A; by constructing a different path that
would be chosen instead of A; in such case.

Let P; be the starting segment of A; in T, and P, be the segment that
continues outside T, until a vertex x back in T, is reached. Consider y, the
lowest common ancestor of x and ¢; and let Ps; be the path from ¢; to y and P,
the path from y to 2. You can look at Figure 6 to visualise the situation and we
will argue that P3 U Py should have been chosen instead of Py U Ps.

It should be clear that e is somewhere over y as x and t; are both in 7T,. Since
e is the first edge for which the algorithm refuses to pay, so the algorithm did
not fail before and therefore P3 U Py is at least as cheap as Py U P>. As P3 U P,



Py

D Py

Py

Fig. 6. Proof of Path Lemma

induces a higher ancestor y than P, U P, we have a contradiction with the choice
of A; as the one with most ancestors, which completes the proof of the lemma.

Using the above lemma we can now finish the proof of correctness of the
algorithm. Let us assume that the algorithm fails to pay for some edge e so each
player i with V; N T. # () has now an alternate path A; that leaves T, at vertex
d; and does not return there any more according to the path lemma.

The situation is depicted on Figure 7 and we will now show that in such case
T* can not be the cheapest tree as we assumed.

Let us consider all the edges in T*\T, together with all the edges in the
alternate paths A;. Clearly these edges connect all vertices t; € T, with s as
all paths A; are included and also these connect all other vertices ¢; with s as
T*\T, is included. Therefore to reach the desired contradiction it is enough to
show that the total cost of all these edges is smaller that the cost of T*.

Since the algorithm failed to pay for the edge e we know that with respect
to the payments and modified costs at that point in the run of the algorithm it

holds
cle)> Y (A)—pi(T).
{i: t;€T}
As the algorithm runs in reversed BFS order we know that the sum of payments
for T* of all players with nodes in T, is the cost of T, so the above can be
rewritten as

cle) +e(T) > Y (). (1)

{i: t; €T}

10



T Ty T3

Fig. 7. Constructing Cheaper Tree

We know from the path lemma that each A; has three parts, the part A{
that is inside T,, the part A?“* that is outside T* and the final part A} that
is in T*\T.. By definition the modified cost of A%“* is the cost of this path,
the modified cost of A} is 0 and the modified cost of A is what ¢ paid for it.
Therefore we can add the cost of T*\T, to both sides of (1) and break each A;
into three parts obtaining

o) > e(TNT) + ) AP+ Y wil4).

{i: t;€T.} {i: t;€T}

Therefore to complete the proof we only need to show that the last compo-
nent, the payments of all players for the paths A; inside T, is bigger than the
total cost of the edges belonging to paths A; inside T.. To see this look at the
points d; and notice that by the choice of A; in a subtree rooted at any d; there
can be no other point d;, as then either player ¢ could deviate in d; and get a
cheaper path or player j could deviate in d; and get a path with more ancestors.
Therefore each tree rooted at any d; must be fully paid for as the algorithm
worked on it and did not fail, so the payments of the players are enough to cover
the costs. This completes the proof of Theorem 3.

As you see we have an algorithm that assigns payments to players and con-
structs an equilibrium where players buy the optimal cost tree. Therefore the
price of stability in the case of single source connection games is 1 and we showed
how an algorithm can compute the Nash Equilibrium in such case. Although the

11



algorithm that assigns payments is clearly polynomial it uses the optimal cost
tree, which is NP-hard to compute, but for which 1, 55-approximation exists [5].

Given an a-approximate tree T, we can construct an algorithm polynomial
in 1 for (1 + €)-approximate equilibrium with cost at most ¢(7,). The idea is
to use the alternate paths to build a better tree if some edge is not paid for. To
make only substantial improvement we use the possibility to deviate by a factor
(1+e).

The result about single source connection games can be extended to directed
graphs [2] where a more complex argument is needed to prove the lemma anal-
ogous to the path lemma. We can also extend the definition of the game so that
each player will have a maximal cost that he can not exceed. In single source
connection games with such restriction we also have a Nash Equilibrium pur-
chasing the optimal tree. To reduce this case to the case for directed graphs it
is enough to add a new vertex ¢} for each player and connect it with a directed
edge costing 0 to the old ¢; and with an edge costing the same as the maximal
allowed cost to s.

As you can see even though in general connection games it is not always
possible to find a Nash Equilibrium and the price of stability might be very high
the situation in single source games is much better as an equilibrium always
exists and stability comes for free. Still sometimes we need to solve the problem
for more general games and in such case we can use a simple mechanism.

5 Fair Connection Games

Fair connection games differ in the problem setting from the basic connection
games as now players can only choose if they want to use an edge or if they do
not want to use it at all. More formally each player ¢ chooses now a set of edges
FE; C E such that all vertices V; that the player needs to connect are connected
by the edges in E;.

In this setting the cost of each edge is assigned by a mechanism, a deal
between the agents. We will consider only such mechanism that the cost is always
divided equally between all agents that use the edge. More formally if a play is
given by the edges chosen by all players

p= (121,.. .,IZ)V)
and the set of agents using an edge e is
Ale)={i : e€ E;}

then the payment for edge e paid by player ¢ in the play p is given by

cle) . )
pile) = { TAGI if e € B,
0 else.

12



and the total payment that agent ¢ or all agents have to pay in p is

N

Pip) =Y _pile), B=>_ Pip).

eck i=1

You can see that in this way each player using edge e pays the same price for
the edge and this mechanism used to determine the price is derived from Shapley
cost-sharing mechanism which has a few nice properties from mechanism-design
point of view [4].

In this modified formalism the graph of bought edges is also defined,

Gp:(V,ElUEQU...UEN),

and the definitions of Nash Equilibria and the price of stability and anarchy are
analogous to the general case.

Fair connection games put only a slight constraint on the selfishness of the
agents as the agents only have to agree on this very simple mechanism. Still this
is enough not only to guarantee the existence of equilibria in such games but also
to make the price of stability at most logarithmic with respect to the number
of agents, which is a significant improvement to the basic model of connection
games.

Before we start to prove these properties please notice that the class of fair
connection games that we defined is a subclass of congestion games defined by
Monderer and Shapley [6]. In a congestion game we have a function f,(k) that
denotes the cost of the edge e when k players decide to use it, so in our case
fe(k) = 5.

One of the most important properties of congestion games is the fact that a
potential function for these games exists. We can define for a given play p the
potential of p by

[A(e)]

@(p) = Z Z fe(k)

eclE k=1

Let us now consider two plays p and p’ where the only difference between
them is that player ¢ changed his strategy, so if p = (Ey,...,E,) then p/ =
(Eq,...,El,...E,). The astonishing property of the potential function [6] is
that for any such two plays the change of the potential is exactly the same as

the change of the total payment of the player that changed his strategy,

You should note that the change may affect costs of many edges and that pay-
ments of other players may also change, but the potential function measures the
change of the total payment of the player that has chosen a different strategy.
Games for which such potential functions exist are called potential games and
congestion games are in this class.

13



Let us also introduce the notation for harmonic sum which will be used as
an exact bound for the price of stability. Let

11 1
Hk) =1+ 5+ 5+t p

and you should note that H (k) is approximately ©(logk).

Theorem 4 ([1]). In fair connection games a (pure) Nash Equilibrium always
exists and the price of stability is at most H(N).

Proof. In [6] Monderer and Shapley show that in potential games (pure) Nash
Equilibria always exist. To find some equilibrium in a potential game you can
just start from any play po and allow any player to change his strategy so that his
payment will decrease. Then you have a new play p; and you know that since only
one player changed his strategy and decreased his payment, then &(py) > ®(p1).
You can repeat this getting new plays pa,ps, ..., pr with &(pg) > P(p1) > ... >
@(py,) until the potential function can not be decreased any more and in such case
pi is a Nash Equilibrium. You should note that in a game with finite number
of strategies and players there is a minimum by which the potential function
decreases in each step and so an infimum will always be reached.

To show the bound on the price of stability let us compute the potential
function for the case of fair connection games, where for a play p = (E1, ..., En)
we will denote all used edges used by £, = F4 U...U Ey,

[A(e)] [A(e)]

o)=Y Y =33 o S emae).

ecE k=1 eeE k=1 eck,

Therefore as 1 < H(]A(e)|) < H(N) we can use the following inequalities for
any play p

Yocle) <dp)= Y cle)H(A)) < HIN) Y (o).

eckE, eckEy, e€E),

Let now p* be the play that represents the globally optimal solution and
minimises the total cost, so Py« = ZeeEP* c¢(e) is minimal. We can start from
this play and reach some Nash Equilibrium p in the way described before so that
P(p) < &(p*) and therefore

H(N)Ppe = H(N) Y~ c(e) > d(p) > d(p) > Y cle) = P,
e€E,« eck,

so indeed the price of stability is at most H(N), which concludes the proof.

To see that in fair connection games the price of stability can be very close
to H(N) please take a look at the game presented in Figure 8 assuming € — 0.
Indeed, the only Nash Equilibrium in this fair connection game is when each
player ¢ buys the edge from ¢; to s paying % If any group of players {i1,...,%}

14



Fig. 8. Price of Stability in Fair Connection Games

decided to buy the optimal solution each of them would have to pay % But
among these players there is at least one that already pays % so his payment
would increase.

You should notice that the game from Figure 8 analysed in the general setting
would be a single source connection game, so the algorithm from the previous
chapter would find the optimal solution. The problem is that the best general
equilibrium requires that payments for the edge that costs 1+ € are not equal for
all players, for example the first player could pay % and the second player % +€
and the other players nothing. As you can see this is better for everyone but is
in some sense unfair as some of the players do not pay anything. So fairness also
has some cost, but luckily it is only logarithmic in the number of players and
this method guarantees that an equilibrium can always be found.

6 Conclusions

Network design games are applicable in many practical situations and try to
model the behaviour of selfish agents. Unluckily if there are no constraints on
the selfish behaviour the price to pay for it can be very high. In connection games
without any constraints both the price of anarchy and the price of stability can
be maximally high. Moreover, in some situations finding an equilibrium might
not be possible at all and deciding if an equilibrium exists is in general NP-
hard. In the general case the only positive result that we know is the existence
of 3-approximate Nash Equilibria, though only (4,55 + ¢)-approximate can be
computed in polynomial time.

We can try to keep the selfishness of the agents unlimited but constrain
the structure of the game and analyse single source connection games. In such
games an equilibrium always exists and the price of stability is 1 so the agents

15



can always find an equilibrium with optimal cost. Still in polynomial time we
can only compute (1,55 + €)-approximate equilibria in such games.

If the structure of single source games in too constrained for the problem
we can use a simple mechanism to assign how much each agent has to pay for a
connection in the network. In such case we allow the agents only to choose which
connections they want to use and the cost of each connection is equally divided
between all agents that use it. In such fair connection games a Nash Equilibrium
always exists and the price of stability by N agents is of the order log(N). Still
it might happen that the restriction that the cost of each connection is divided
equally between all agents using it makes it impossible to find an equilibrium
with a lower cost, for example for a single source connection game, so using the
fair mechanism of cost assignment also has a price.

It is possible to study other mechanisms for sharing costs of the connections
among multiple agents [4]. There are also interesting possible ways to approx-
imate the equilibria in network design games and perhaps better results can
be obtained for approximate equilibria in the general setting. With the wide
adoption of internet and other local and global networks the analysis of connec-
tion games and other related problems can provide important insights into the
problem of creating and managing such networks.

References

1. E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden. The price of stability for network design with fair cost allocation. In Proc.
44th Ann. IEEE Symp. on Foundations of Comput. Sci. (FOCS), 2004.

2. E. Anshelevich, A. Dasgupta, E. Tardos, and T. Wexler. Near-optimal network
design with selfish agents. In Proc. 35th Ann. ACM. Symp. on Theory of Comput.
(STOC), 2003.

3. A. Czumaj, P. Krysta, and B. Vocking. Selfish traffic allocation for server farms.
In Proc. 84th Ann. ACM. Symp. on Theory of Comput. (STOC), 2002.

4. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. J. Comput. Syst. Sci, 2001.

5. A.Zelikowsky G. Robins. Improved steiner tree approximation in graphs. In
Proc.Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA ), 2000.

6. D. Monderer and L. Shapley. Potential games. Games and Economic Behaviour 14,
1996.

7. T. Roughgarden. The price of anarchy is independent of the network topology. In
Proc. 84th Ann. ACM. Symp. on Theory of Comput. (STOC), 2002.

8. A. Vetta. Nash equilibria in competitive societies with applications to facility loca-
tion, traffic routing and auctions. In Proc. 43th Ann. IEEE Symp. on Foundations
of Comput. Sci. (FOCS), 2002.

16



