Benedikt Pago

Adresse
Mathematische Grundlagen der InformatikRWTH Aachen
D-52056 Aachen
Telefon: | +49-241-80-21726 |
Fax: | +49-241-80-22215 |
Büro: | 4114a (E1) / Ahornstr. 55 |
E-Mail: | pago [AT] logic.rwth-aachen.de |
Sprechstunden
Wenn die Tür offen ist.Forschung
- Descriptive Complexity Theory
- Proof Complexity
- Choiceless Polynomial Time
Preise und Auszeichnungen
Lehre
- Wintersemester 2022
- Sommersemester 2022
- Wintersemester 2021
- Wintersemester 2020
- Wintersemester 2019
- Sommersemester 2019
- Wintersemester 2018
Selected talks
- Slides for the talk "A Finite-Model-Theoretic View on Propositional Proof Complexity", held at the Simons online workshop on Theoretical Foundations of SAT/SMT Solving, Berkeley 2021
- Slides for the talk "Limitations of Choiceless Definability", held at CSL 2021, Ljubljana
Aktuelle Publikationen
- B. Pago. Lower bounds for Choiceless Polynomial Time via Symmetric XOR-circuits. arXiv:2302.05426 [cs.CC], 2023.
- B. Pago. Finite Model Theory and Proof Complexity Revisited: Distinguishing Graphs in Choiceless Polynomial Time and the Extended Polynomial Calculus. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023) (B. Klin and E. Pimentel, Eds.), vol. 252 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 31:1–31:19, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
- B. Pago. Finite Model Theory and Proof Complexity revisited: Distinguishing graphs in Choiceless Polynomial Time and the Extended Polynomial Calculus. arXiv:2206.05086 [cs.LO], full version of CSL'23 paper, 2022.
- B. Pago. Choiceless Computation and Symmetry: Limitations of Definability. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021) (C. Baier and J. Goubault-Larrecq, Eds.), vol. 183 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 33:1–33:21, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021.
- E. Grädel, M. Grohe, B. Pago, and W. Pakusa. A Finite-Model-Theoretic View on Propositional Proof Complexity. Logical Methods in Computer Science, vol. Volume 15, Issue 1, 2019.